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An urban low-height barrier meant to attenuate tramway noise emission for nearby walking pedestrians or cyclists

is studied. A semi-analytical solution for the two-dimensional scattering of a line source by a cylinder covered by

an arbitrary distribution of impedance and its image with respect to a vertical baffle is derived. This description is

used to model the shadowing due to a semi-cylindrical noise barrier close to a tramway. This solution is used in a

gradient-based optimization approach of the admittance distribution to maximize the broadband insertion loss in a

given receiver zone. A feasible optimized surface treatment made of a porous layer and a micro-perforated resonant

panel is proposed, with an improvement of 14 dB(A) with respect to an entirely rigid barrier. The optimization gain

with respect to a uniform absorbent admittance is about 8 dB(A). Extra tests with the boundary element method

show that this gain is reduced but still significant if more realistic conditions are considered.

1 Introduction
In the past forty years, there has been a lot of work and

effort on trying to understand what affects the efficiency of a

noise barrier and how to come up with more efficient designs,

especially in the case of highway noise barriers. However,

there is more and more concern to reduce noise exposure

not only close to highways but also in urban areas. In this

case, using walls several meters high is not a feasible option,

and therefore the possibility of using a low height protec-

tion directly between the source and the receiver started to

gain interest [1, 2, 3, 4]. Because the propagation distances

are small, near field interference effects are expected to be

stronger than in the highway case, and those effects will de-

pend greatly on the shape and the surface admittance (the

inverse of the impedance). Optimization of the impedance

coverage to maximize the attenuation is therefore likely to

be efficient, as shown by Thorsson [4].

As an example application, in this paper we consider a

low-height barrier meant to attenuate tramway noise. A re-

cent study [5] showed that most of the noise emitted by a

modern tramway comes from the rail track and the bogie (un-

dercarriage structure) areas, which are close to the ground

and therefore a low height barrier would be likely to attenu-

ate these sources effectively.

Therefore, in this study we consider a low-height (one

meter high) semi-cylindrical barrier and we allow the sur-

face admittance to be optimized by a deterministic gradient

method. Using the semi-cylindrical geometry has several as-

sets: aesthetically and structurally such a barrier would be in-

tegrated more easily in an urban environment, and the sound

field can be calculated by semi-analytical methods even in

the case of a complex admittance distribution.

2 Description and modeling of the bar-
rier implementation

The atmosphere is assumed homogeneous with a speed

of sound of c0 = 343 m/s. The considered physical problem

is the calculation of the acoustic pressure field p close to a

low-height urban noise barrier in the presence of a tramway

(see figure 1). According to Pallas et al. [5], most of the

noise emitted by a modern tramway rolling at 40 km/h on

rigid paving comes from three sources close to the ground :

rail track, powered and un-powered bogie. We model those

sources as one infinite, omni-directional line source lying on

the ground, with a spectral content given by the incoherent

sum of the three identified sources (see figure 2). One can in-

fer that most of the A-weighted acoustic energy is contained

in the frequency range 100-5000 Hz, which will be range of

interest in the rest of this study. It is also assumed that the ge-

Figure 1: Considered geometrical configuration for the implementation of

a tramway low-height noise barrier. The dotted line corresponds to the

idealization of the tramway side as a vertical baffle.
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Figure 2: Comparison of third octave spectra of the different sources

identified in [5] and their incoherent summation.

ometry is invariant along the axis of the track, which makes

the problem purely two dimensional. This assumption has

been shown to be correct when predicting excess attenuation

in narrow frequency bands, which is what we will use in the

calculation of the broadband insertion loss.

The presence of the tramway will cause the sound to bounce

on its surface and diffract at the roof edge and at the gap be-

tween the carriage and the ground. Calculation of the sound

field in such an environment with a realistic cross section of

the tramway could be achieved with the boundary element

method (BEM). However, in order to reduce the computa-

tion time, one can model the tramway as an infinite rigid ver-

tical baffle placed at the location of the vertical portion of the

tramway. This idealization is equivalent to introducing an

image barrier, symmetrical to the original one with respect

to the tramway side surface. Finally, the ground is modeled

as perfectly rigid as well. This assumption allows applica-

tion of the image theory once again, transforming both semi-

cylindrical barriers into whole cylinders.

The radius of the barrier is a = 1 m. The distance between

the noise source and the center of the barrier is d = 1.5 m,

which leaves a gap of 0.5 m between the tramway and the

barrier. The receiver locations have been chosen to represent

a range of possible locations of pedestrian ears: horizontal

distance x from the center of the barrier between 2 m and

5 m , and height y between 1 m and 1.8 m (see figure 1).
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2.1 Mathematical representation of the geom-
etry

Figure 3: Mathematical representation of the scattering problem and

definition of two coordinate systems and notations.

The two considered approximations - rigid ground and

tramway side as a vertical baffle - end up making the prob-

lem equivalent to the scattering of a line source by two infi-

nite cylinders covered by an arbitrary distribution of admit-

tance. Notations for the geometrical variables are shown in

figure 3. This problem is treatable by a semi-analytical ap-

proach which we will describe. The solution is derived in the

frequency domain, so that the frequency f is fixed and the

wavenumber is k = 2π f /c0. The time convention is e−iωt.

The surface of the original cylinder is assumed to be locally

reacting described by a normalized admittance function β(θ1)

with θ1 ∈ [0, 2π]. The finite admittance boundary condition

at the surface can be written as:

(∀θ1 ∈ [0, 2π])
∂p
∂r1

(a, θ1) + ik β(θ1) p(a, θ1) = 0 (1)

Because of the implicit angular periodicity and the symme-

try, the distribution can be decomposed as an angular Fourier

series:

β(θ1) =

∞∑
p=0

βp cos(pθ1) (2)

Only cosine terms are considered because β has to be sym-

metric about θ1 = 0. The coefficients βp will be referred

to as the admittance coefficients and will uniquely define an

admittance distribution. Those coefficients also depend on

frequency. The distribution on the image cylinder β̃(θ2) can

be decomposed in a similar fashion, but because of the sym-

metry with respect to the vertical baffle, coefficients must be

replaced by (−1)p βp.

3 Solution of the acoustic scattering by
two non uniform impedant cylinders

The pressure field is broken up like p = pin + psc
1
+ psc

2

where pin is the incident field, psc
1

is the field scattered by

the true cylinder and psc
2

is the field scattered by the image

cylinder. We will assume for now a unit amplitude for the

source. The incident field is:

pin =
i
4

[
H0(k SR) + H0(k S’R)

]
(3)

where S’ is the image source with respect to the ground, SR

and S’R the distances between the receiver and the actual and

image source respectively and H0 is the Hankel function of

the first kind of order zero. Since both scattered fields are

purely outgoing and the problem is symmetrical about θ = 0,

they can be assumed to be a series of the form:

psc
l (rl, θl) =

∞∑
n=0

αl
n

εn

Hn(krl)

Hn(ka)
cos(nθl) (4)

with l = 1, 2 , εn = (2, 1, 1, 1...) and Hn is the Hankel func-

tions of the first kind of order n. Determination of the coef-

ficients αl
n comes from the boundary conditions on the origi-

nal and image cylinders. This requires to express the incident

field and one of the two scattered fields in the same basis of

functions than the other scattered field. This can be achieved

using Graf’s addition theorem (see [6] p.363). Applying the

finite impedance boundary condition on both cylinders and

identifying Fourier coefficients for the two angular variables

yields the following infinite matrix equation satisfied by the

coefficients α1
n and α2

n:

[
M11 M12

M21 M22

] [
α1

α2

]
=

[
e1

e2

]
(5)

α1 and α2 are two vectors containing the coefficients α1
n and

α2
n respectively; e1 and e2 are the two vectors containing the

coefficients e1
p and e2

p corresponding to the influence of the

incident field on each cylinder. Detailed calculations of the

different coefficients of system (5) are provided elsewhere

[7].

In order to solve equation (5) numerically, several trun-

cations must be made on the different series representing the

admittance distribution β, the incident field pin and the two

scattered fields psc
l . First, we define Nmax the maximum or-

der of the admittance Fourier series (2), which is considered

a given parameter. Then, we need to ensure that the inci-

dent and scattered fields decompositions are accurate at the

surface of each cylinder, which can be done by conducting

simple convergence studies.

4 Objective function
The semi-analytical solution provides a way to calculate

the complex pressure amplitude p(R, f ) at each frequency

and at each receiver point, for a unit source amplitude. One

can then define an average attenuation:

An =

∑
i |p(Ri, fn)|2∑

i |pin(Ri, fn)|2 (6)

Then, we consider a broadband attenuation based on the sound

power levels Lw,n measured by Pallas et al. [5] and shown in

figure 2. Defining an amplitude-like quantity S n = 10Lw,n/10,

the broadband attenuation is given by:

g =
∑

n S n An∑
n S n

(7)

which is equivalent to the objective function considered by

Baulac et al. [1, 2]. In the optimization process, the atten-

uation is calculated at each sixth-octave frequency between

100 and 5000 Hz. We would like to minimize the function g,

which only depends on the admittance distribution and there-

fore on the coefficients βp defined in 2.1. One can also cal-

culate from the objective function a broadband insertion loss

in dB(A) defined by IL = −10 log g.
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4.1 Gradient of the attenuation
A deterministic gradient-based optimization approach has

been chosen. Indeed, in such a semi-analytical context, sen-

sitivities of the objective function with respect to changes in

parameters (gradient components) can be computed quickly

and accurately which would make the optimization search

relatively fast as well. The objective function is directly re-

lated to the attenuations An at a given frequency, therefore we

only need to calculate its gradient with respect to the admit-

tance coefficients ∂An/∂β j. Since the incident field does not

depend on the barrier, we have for any index j ∈ [0,Nmax]:

∂An

∂β j
=

2∑
i |pin(Ri, fn)|2

∑
i

Re
[
p(Ri, fn)∗

∑
l=1,2

∂psc
l (Ri, fn)

∂β j

]

(8)

where ∗ is the complex conjugation. We are left with the

calculation of the gradient of the scattered fields with respect

to the admittance coefficients. Using the definition (4), we

have:

∂psc
l

∂β j
(rl, θl) =

∞∑
n=0

1

εn

∂αl
n

∂β j

Hn(krl)

Hn(ka)
cos(nθl) (9)

with l = 1, 2. The calculation of the gradient of the attenu-

ation is therefore based on the gradient of the vector-valued

function α(β). Taking the derivative of equation (5) with re-

spect to β j yields:

M
∂α

∂β j
=
∂e
∂β j
− ∂M
∂β j
α (10)

Equation (10) is another system of the form M x = b, which

can be solved numerically to obtain the partial derivatives

∂α/∂β j.

5 Application: finite number of panels
with realistic impedance models

Figure 4: Cylindrical barrier covered with a finite number of panels Np.

As an example of application, the barrier is assumed to

be covered by a finite number of panels (see figure 4). Each

of those panels (indexed by p ∈ [1 : Np]) lies between the

two angles θp−1 and θp (with the convention θ0 = 0 and θNp =

π). The angles θ1 to θNp−1 are design variables subject to the

constraint 0 = θ0 � θ1 � θ2 � ... � θNp = π.
Besides, each panel has an admittance described by a

physical model, which typically depends on a small number

of parameters. Following the concept of coupling dissipative

and reactive impedance to broaden the frequency range of

sound attenuation introduced by Namba and Fukushige [8]

and further developed by Selamet et al. [9], we will consider

two types of panels usually used in noise control: micro-
perforated panels (MPP) and absorbent layers. A MPP typ-

ically absorbs sound in selected frequency bands, which can

be more or less broad depending on the hole radius [10]. An

absorbent layer is simply a layer of porous material, typically

described by the Delany & Bazley model [17]. Such mate-

rial provides some reasonable broadband absorption over the

whole frequency range of interest. The layer version of this

model has been shown to model many natural surfaces such

as soils or grass relatively accurately [11].

5.1 Admittance models
5.1.1 Micro-perforated panel

The impedance of a MPP can be written in terms of four

parameters: the porosity s, the hole radius a0, the thickness

of the panel l0 and the cavity depth D. Assuming that the

panel itself is rigid and one can use Sibian’s model for the end

correction, the normalized impedance can then be written in

the e−iωt convention as [12, 13, 14]:

zMPP( f ) = −i
kl0
s

(
1

Θ(x′)
+

16

3π

a0

l0

Ψ(ξ)

Θ(x)

)
+i cotan (kD) (11)

with Θ(w) = 1 − 2

w
√

i

J1(w
√

i)

J0(w
√

i)

k = 2π f /c0 is the wavenumber, ξ =
√

s, x/a0 =
√

2π fρ0/μ

and x′/a0 =
√

2π fρ0/μ′ are the so-called perforate con-

stants, μ′ ≈ 2.2 μ is an equivalent viscosity corresponding to

thermal effects. Finally, the Fok’s function [15, 16] Ψ(ξ) is

a correction to take into account interaction effects between

the different holes. The normalized admittance is then simply

γMPP( f ) = 1/zMPP( f ).

5.1.2 Rigid-backed Delany and Bazley model

Here we consider a layer of porous material of depth d
ended by a rigid backing. Following Delany and Bazley [17],

the normalized impedance and complex wavenumber only

depend on one parameter σ and are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z̃( f ) =1 + 0.0511

(
σ

f

)0.75

+ i 0.0768

(
σ

f

)0.73

k̃
k0

=1 + 0.0858

(
σ

f

)0.7

+ i 0.175

(
σ

f

)0.59
(12)

with k0 = 2π f /c0 is the wavenumber in air. However, be-

cause of the finite depth d of the layer, and by assuming that

the backing is infinitely rigid, the admittance is:

γDB( f ) =
1

z̃( f ) coth(−ik̃d)
(13)

5.2 Description of the optimization problem
Four panels are here considered and they are located as

follows: panels # 1 and # 3 are MPPs, and panels #2 and #4

are absorbent layers. The design variables are here the dif-

ferent parameters involved in the admittance function of each

panel as well as the three angular variables θ1, θ2 and θ3 (see

figure 4). For a given vector set of parameters and angles,

there is a unique set of four panel admittances (γ1, γ2, γ3, γ4)

at each frequency and therefore a unique set of admittance

coefficients βp which can be determined by a straightforward

Fourier series coefficients calculations. We arbitrarily chose

the parameter Nmax = 10 Np. Besides, the derivative of An
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with respect to a parameter x can be related to the derivative

of the αl
n by relations similar to equations (8) and (9) replac-

ing β j with x. Then, using the chain rule one can write:

∂αl
n

∂x
=

Nmax∑
j=0

∂αl
n

∂β j

∂β j

∂x
(14)

so that the derivatives ∂αl
n/∂β j , which can be calculated as

explained in section 4.1, can be used again in this case. One

simply needs to find ∂β j/∂x for example by derivation of

the admittance models (11) and (13). The optimization algo-

rithm is the interior-point algorithm. Furthermore, to allow a

better search of the design space, five random starting points

are used.

To completely define the optimization problem, we still

need to choose a range for the admittance parameters, which

depends on the type of parameter:

• Porosity: smin = 0.01 ; smax = 0.4

• Hole radius [mm]: a0,min = 0.5 ; a0,max = 5

• Panel thickness [cm]: l0,min = 0.2 ; l0,max = 1

• Cavity depth [cm]: Dmin = 1 ; Dmax = 10

• Flow resistivity [kPa.s/m2]: σmin = 50 ; σmax = 200

• Porous layer depth [cm]: dmin = 1 ; dmax = 10

The choice of those ranges is based on physically feasible

values. Especially, the range of flow resistivities has been

chosen according to grassland-type soils values determined

by Attenborough et al. [11].

5.3 Results
Each run of the optimization algorithm converged within

a few hundred iterations. The best obtained solution param-

eters are shown in table 1. If one assumes that the semi-

cylinder is covered only with a porous layer of smallest resis-

tivity σ = σmin the efficiency obtained is 15.3 dB(A), which

is lower than the obtained solution. Therefore, there seems

to be a definite benefit in coupling porous layers and reso-

nant panels, which is again of the order of 8 dB(A). Besides,

substituting panels 1 and 2 by rigid panels in the obtained

solution induces a slight decrease of 0.1 dB(A) in the broad-

band attenuation, which suggests that the admittance on the

receiver side (far from the source) does not influence the at-

tenuation significantly.

Also, comparison of the solution third-octave insertion

losses with reference cases (rigid or porous) shows that the

improvement of the barrier covered by the four optimized

panels is mostly located in the mid-frequency range 300-

1500 Hz where most of the frequency content of the source

is located (see figure 5).

5.4 Validity of the rigid ground and vertical
baffle approximations

The semi-analytical scattering solution which has been

used in the optimization was derived under two important

assumptions: rigid ground and modeling of the tramway as

a vertical infinite baffle. We therefore end this section by

comparing the predicted performance of the barrier covered

Table 1: Model parameters and angular widths of the best obtained solution

Panel Parameter

# 1 (MPP)

Porosity s 0.26

Hole radius a0 [mm] 4.48

Panel thickness l0 [cm] 0.41

Cavity depth D [cm] 8.34

Angular width [× π rad] 0.16

# 2 (porous)

Flow resistivity σ [kPa.s/m2] 120.0

Layer thickness d [cm] 5.34

Angular width [× π rad] 0.06

# 3 (MPP)

Porosity s 0.12

Hole radius a0 [mm] 0.54

Panel thickness l0 [cm] 0.70

Cavity depth D [cm] 9.38

Angular width [× π rad] 0.54

# 4 (porous)

Flow resistivity σ [kPa.s/m2] 51.9

Layer thickness d [cm] 6.04

Angular width [× π rad] 0.23

Broadband IL [dB(A)] 23.1
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Figure 5: Third-octave insertion loss in dB of the optimized solution and

comparison with reference cases: rigid β = 0 (thin solid line), IL = 8.7

dB(A) - uniform porous layer σ = σmin (dotted line), IL = 15.3 dB(A) -

optimized solution (thick solid line), IL = 23.1 dB(A).

with the optimized distribution exposed in 5.3 to more real-

istic situations. To do so, four cases detailed in figure 6 are

considered. In each case, the attenuation at each frequency is

the ratio |pref/p| in dB, with p is the field at the receiver with

the barrier present and pref is the field without the barrier.

The 2D BEM software MICADO developed by Jean [18]

has been used for the calculations. Third-octave insertion

losses results are shown figure 7. The absorbent treatment

on the ground is modeled with a Delany & Bazley layer with

σ = 50 kPa.s/m2 and d = 5 cm, which corresponds to the

most absorbent porous material allowed in the optimization.

To simplify the calculation, one receiver point only of carte-

sian coordinates (3 m, 1.8 m) is considered here. Calculation

of the broadband efficiency based on the tramway spectrum

in each case yields : a) 20.9 dB(A) - b) 19.4 dB(A) - c) 17.3

dB(A) - d) 11.9 dB(A).

Comparing cases a) and b) from figure in 7, one can con-

clude that the infinite baffle approximation for the tramway in

presence of a rigid ground is relatively accurate, even though

it induces a slight over-prediction of 1.5 dB(A) in the broad-

band efficiency. Comparison between b) and c) shows that

the benefit due to the barrier only is reduced when the ground

is treated. This effect is consistent over the considered fre-

quency range, above 200 Hz, inducing a decrease of the ben-

efit of the barrier of 2.1 dB(A). However, comparing c) and

d), one can notice that the optimized non uniform admit-

tance distribution we obtained still performs better than a

barrier covered with a uniform absorbing treatment in the

mid-frequency range 300-1500 Hz, as shown in figure 7, in-

ducing a net benefit of more than 5 dB(A) on the broadband

efficiency, even in the case of a treated ground.
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Figure 6: Description of the four cases used to assess the validity of the

rigid ground and vertical baffle approximations. Surface admittance coding:

black line = rigid ; red hatched area = absorbent ; dotted black line =MPP.

a) Rigid ground, infinite baffle and optimized barrier treatment - b) rigid

ground, realistic tramway and optimized barrier treatment - c) absorbing

ground, realistic tramway and optimized barrier treatment - d) absorbing

ground, realistic tramway and uniform absorbing barrier treatment.
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Figure 7: Third octave insertion losses in dB calculated in the four cases

detailed in figure 6.

6 Conclusion
A semi-analytical solution has been developed in order

to calculate the sound attenuation due to a semi-cylindrical

noise barrier covered by any distribution of admittance in the

presence of a vertical baffle and a rigid ground. Such a math-

ematical representation is used to model the sound field close

to a tramway, in presence of a semi-cylindrical low height

barrier between the source and the receivers. The fast evalu-

ation of the efficiency as well as its gradient with respect to

the admittance distribution therefore allows the optimization

of the admittance distribution on the surface of the barrier.

As an example application, the barrier is assumed to be

covered by a set of MPPs and porous layers, and the opti-

mization is used to determine the parameters describing the

admittance of each panel. It is found that strongly absorbent

materials with low flow resistivities seem indeed necessary,

however using a uniform purely absorbent layer with a low

flow resistivity is not the optimal solution. Coupling this ab-

sorbing layer with a tuned resonant panel can significantly

improve the attenuation while only slightly degrading the

performance at higher frequencies. Also, it seems that the

attenuation is somewhat insensitive to the barrier admittance

on the opposite side of the source.

Additional calculations using the BEM with more realis-

tic conditions showed that the predicted benefit of the opti-

mized barrier is lowered by a few dB(A) if a more realistic

tramway cross section and an absorbent ground are consid-

ered, but remains significant (more than 16 dB(A)).

Efficiencies obtained in this study are probably higher

than what would be observed in practice due to the simpli-

fied description of the geometry and source. However, the

development of the semi-analytical model that follows from

those assumptions provides an efficient way to automatically

choose treatment surface design parameters in order to im-

prove the performance of the low height barrier.
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