Nonlinear plate vibrations: A modal approach with application to cymbals and gongs

M. Ducceschia, C. Touzéa and S. Bilbaob

aUME (Unité de Mécanique), ENSTA - ParisTech, Chemin de la Hunière, 91761 Palaiseau, France

bUniversity of Edinburgh, Room 7306B, James Clerk Maxwell Building, King’s Buildings, EH9 3JZ Edinburgh, UK
ducceschi@ensta.fr
1 Introduction

Acoustical interest of rectangular thin plate vibrations resides in their ability to simulate the sound of more realistic percussive instruments such as gongs and cymbals [14]. However, the relatively simpler geometry of rectangular plates allows for a more systematic study than other structures like cymbals or shells. Plates present shimmering and crashing sounds when the amplitude of vibration becomes comparable to the plate thickness, thus violating the basic assumption of linear vibrations. Large vibration patterns can be originated thanks to external forcing, like an impulsive load (for example, by striking the plate with a mallet), or a sinusoidal forcing of reasonable amplitude.

Nonlinear plate vibrations can be described by the von Kármán equations. These take into account a quadratic correction to the longitudinal strain, as compared to the classical linear plate equation by Kirchhoff [12]. The type of nonlinearity introduced is thus purely geometrical.

Due to the vast spectrum of applications, rectangular plates have been the subject of extensive research, with special attention to analytical or numerical models. Amongst others, one could cite the pioneering works of Chu and Herrmann [5] and Yamaki [15], and more recent developments by Seo et al. [11] and Anlas and Elbeyli [2]. Finite elements methods were employed by Ribeiro and Petyt [9, 10], Ribeiro [8], Boumediene et al. [4]. However, very few experiments have been performed. Amabili [1] used a parameter continuation software to perform bifurcation analysis, and compared the results with experimental data, finding satisfactory agreement.

In the realm of sound synthesis, Bilbao [3] developed a finite difference scheme to integrate the equations directly in the time domain.

Here, another numerical test is developed. It makes use of a pure modal approach, where the solution is expanded onto the linear normal modes for the displacement and stress functions. The modal expansion is truncated at an order N so that the original system is viewed as an N-degree-of-freedom system where the modes interact nonlinearly. The original partial differential equations can be integrated directly in the space coordinates, thus leaving a set of ordinary nonlinear differential equations.

Although the cited works take into account various aspects of nonlinear plate theory and boundary conditions, none of them is really focused on quantifying and explaining the nature of the coupling coefficients. This model then is specifically designed to give a natural description of the coupling coefficients, that, in theory, can be calculated systematically for any set of boundary conditions.

The case under study is that of a simply supported plate. In the literature, different sets of boundary conditions correspond to the simply supported case. The distinction is originated upon the role that the Airy stress function plays in the in-plane motion. Here, the case of a simply supported plate with in-plane movable edges is chosen. The conditions for the transverse motion are then simply given by imposing zero displacement and flexural moments at the boundary. For the in-plane motion with movable edges, one imposes the Airy stress function to vanish along with its first normal derivative, as shown in [12]. As a result, the stress function equation takes the same form as that of a clamped Kirchhoff plate.

The solution for the displacement is given analytically by a double Fourier sine series, which also provides the linear eigenfrequencies. The Airy function case instead does not have an analytical solution. One has then to resort to some numerical strategy. Here the choice was to follow the work by W.L. Li [7], who makes use of the Rayleigh-Ritz method by constructing the solution upon a modified double Fourier cosine series.

Once that the linear normal modes are found, one can manipulate the von Kármán system to derive a set of coupled ordinary differential equations with cubic nonlinearities.

The current model is validated by direct comparison with a finite difference scheme by Bilbao [3], as well as previous results found in the literature. Free vibrations are inspected thanks to a continuation software, allowing the computation of the nonlinear amplitude-frequency relations, exhibiting complicated dynamics with numerous internal resonances and coupled branches.

2 Model Description

2.1 Modal Equations

The current section presents the von Kármán equations as well as the modal approach adopted for the resolution. It is assumed that the linear modes are known regardless the particular form of the boundary conditions. A discussion specific to the simply supported case is found in the next sections.

A rectangular plate of dimensions L_x, L_y is considered. The plate is homogeneous, isotropic, of density ρ, Young’s modulus E and Poisson’s ratio ν. Its flexural rigidity $D = Eh^3/12(1-\nu^2)$. The von Kármán system then reads

\[D\Delta w + \rho h\ddot{w} + c\omega = L(w, F) + \delta(x-x_0)\dot{f}\cos(\Omega t) \quad (1a) \]

\[\Delta F = -\frac{Eh}{2}L(w, w) \quad (1b) \]

where Δ is the Laplacian operator, $w = w(x,y,t)$ is the transverse displacement and $F = F(x,y,t)$ is Airy stress function. The equations present a viscous damping term cw and a sinusoidal forcing term $\delta(x-x_0)\dot{f}\cos(\Omega t)$ applied at the point x_0 on the plate. The damping will take the form of modal viscous damping once that the equations are discretised along the normal modes. The bilinear operator $L(\cdot, \cdot)$ is known as von Kármán operator [12] and, in cartesian coordinates, it
has the form of
\[L(\alpha, \beta) = \alpha,_{xx} \beta,_{yy} + \alpha,_{yy} \beta,_{xx} - 2\alpha,_{xy} \beta,_{xy} \]
(2)
where \(\alpha,_{s}\) denotes differentiation with respect to the variable \(s\). This operator, although itself bilinear, is the source of the nonlinear terms in the equations. All the quantities are taken in their natural units, so that Eq. (1a) and Eq. (1b) have the dimensions, respectively, of kg m\(^{-4}\) s\(^{-2}\) and kg m\(^{-2}\) s\(^{-2}\).

The displacement \(w\) and the stress function \(F\) are then discretised along the linear modes. This is to say that they satisfy the following linear partial differential equations:
\[w = S_s \sum_{k=1}^{\infty} \Phi_k(x,y) q_k(t); \]
\[\Delta \Phi_k(x,y) = \frac{\rho h}{D} \omega^2 \Phi_k(x,y) \]
(3a)
\[F = S_F \sum_{k=1}^{\infty} \Psi_k(x,y) \eta_k(t); \]
\[\Delta \Psi_k(x,y) = \frac{\gamma}{c_s^4} \Psi_k(x,y) \]
(3b)
along with the appropriate boundary conditions. A discussion on boundary conditions is found in [12]. The next subsection will deal with the case of a simply supported plate with movable edges. For conciseness, the dependence of the functions on the variables \(x, y, t\) will not be displayed any more, unless necessary.

The numbers \(S_s\) and \(S_F\) are constants of normalisation that can be chosen arbitrarily. They are introduced so that the norms of the functions
\[\Phi_k = S_s \frac{\Phi_k}{||\Phi_k||}; \quad \Psi_k = S_F \frac{\Psi_k}{||\Psi_k||} \]
(4)
arere, respectively, \(S_s\) and \(S_F\). The linear modes so defined are orthogonal with respect to integration over the problem’s domain. Orthogonality is intended in the sense of \(L^2\) real function spaces, where the inner product between two members \(\alpha\) and \(\beta\) of the space is
\[\langle \alpha, \beta \rangle = \int_S \alpha \beta \, dS \]
(5)
This allows for manipulation of Eq. (1) when used in combination with Eq. (3). Starting with Eq. (1b), one obtains
\[\eta_k = -\frac{E h S_s}{2\omega^2 S_F} \sum_{p,q} q_{pq} \int_S \Psi_k L(\Phi_p, \Phi_q) \, dS / ||\Psi_k|| ||\Phi_p|| ||\Phi_q|| \]
(6)
Integration was performed over the domain \(S\), and the orthogonality relation was used. Eq. (1a) needs a longer manipulation, thus all the steps are presented. First, the displacement and stress functions are written using the modal expansions:
\[\rho h S_s \sum_{k=1}^{\infty} \frac{\Phi_k}{||\Phi_k||} q_k + \rho h S_s \sum_{k=1}^{\infty} \frac{\Phi_k}{||\Phi_k||} \dot{q_k} + c_s S_s \sum_{k=1}^{\infty} \frac{\Phi_k}{||\Phi_k||} \ddot{q}_k = \sum_{p,q,n} \frac{S_p S_n}{||\Phi_n|| ||\Phi_p||} q_{pq} \eta_n L(\Phi_p, \Phi_q) + \delta(x - x_0) f \cos(\Omega t) \]
(7)
Then the expression for \(\eta_n\) in Eq. (6) is substituted into Eq. (7) to obtain, on the right hand side
\[\ldots = -\frac{E h S_s}{2} \sum_{n,p,q,r} \frac{1}{\omega^2} \frac{\int_S \Psi_n L(\Phi_p, \Phi_q) \, dS}{||\Psi_p|| ||\Phi_n|| ||\Psi_q||} q_{pq} q_{qr} \]
(8)
Now both sides are multiplied by \(\Phi_r\), and integrals over the domain are taken:
\[||\Phi_r|| \rho h S_n (\omega^2 q_r + \dot{q}_r + 2\chi \omega q_r) = -\frac{E h S_s}{2} \sum_{n,p,q,r} \frac{1}{\omega^2} \frac{\int_S \Psi_n L(\Phi_p, \Phi_q) \, dS}{||\Psi_p|| ||\Phi_n|| ||\Phi_q||} q_{pq} q_{qr} + \Phi_r(x_0) f \cos(\Omega t) \]
(9)
Note that, after integration, each one of the modes presents its own modal damping, as defined in [1]. The tensors \(H\) and \(E\) are:
\[H_{p,q,r} = \left(\int_S \Psi_n L(\Phi_p, \Phi_q) \, dS / ||\Psi_n|| ||\Phi_p|| ||\Phi_q|| \right) \left(E_{p,n} / ||\Phi_p|| ||\Phi_n|| ||\Phi_q|| \right) \]
(10)
Both members can be divided by ||\(\Phi_r||\rho h S_n\) to obtain
\[\dot{q}_r + 2\chi \omega q_r + \omega^2 q_r = -\frac{E h S_s}{2\rho} \sum_{n,p,q,r} \frac{1}{\omega^2} \frac{\int_S \Psi_n L(\Phi_p, \Phi_q) \, dS}{||\Psi_p|| ||\Phi_n|| ||\Phi_q||} q_{pq} q_{qr} + \frac{\Phi_r(x_0)}{||\Phi_r||} f \cos(\Omega t) \]
(11)
A fourth order tensor \(\Gamma_{p,q,r}\) is defined as
\[\Gamma_{p,q,r} = \sum_{n} \frac{E}{2\rho} \frac{H_{p,q,r}}{c_s^4} \]
(12)
is introduced in Eq. (11) and represents the tensor of the cubic coupling coefficients.

2.2 Boundary Conditions
The case under study is that of a simply supported plate with movable edges. This translates into the following boundary conditions for Eq. (3a) and Eq. (3b):
\[\Phi_k = \frac{\partial \Phi_k}{\partial n} = 0 \quad \forall x \in \partial S \]
(13a)
\[\Psi_k = \frac{\partial \Psi_k}{\partial n} = 0 \quad \forall x \in \partial S \]
(13b)
where \(\partial S\) is the boundary of the rectangular area \(S\) and \(n\) indicates the direction normal to the boundary. Eq. (3a) along with conditions (13a) is easily solved by considering
\[\Phi_k(x,y) = X_m^\Phi(x) Y_n^\Phi(y) = \sin \left(\frac{m\pi x}{L_x} \right) \sin \left(\frac{n\pi y}{L_y} \right) \]
(14)
and thus
\[\omega^2 = \frac{D}{\rho h} \left(\left[\frac{m\pi}{L_x} \right]^2 + \left[\frac{n\pi}{L_y} \right]^2 \right)^2 \]
(15)
Note that the index \(j\) is indeed a double index \(m,n\). The modes are sorted in ascending order according to the value of their eigenfrequencies.

The equation for \(\Psi_k\) does not present an analytical solution. The next section is then devoted to explaining the numerical model employed to solve the equation.

3 A solution for the clamped plate
Eq. (3b) along with (13b) represents the Kirchhoff linear clamped plate equation. Li [7] presents a method to solve equations of the type (3b) with general boundary conditions. Here however emphasis is put on the clamped case. The
equation of motion and boundary conditions are obtained thanks to a variational approach of the form

$$\delta \int_{t_0}^{t_1} (T - V) \, dt = 0$$

(16)

for two arbitrary instants t_0, t_1. T and V are the kinetic and potential energies of the system, a form of which reads

$$2V = \int_S (F_{xx}^2 + F_{yy}^2 + 2\nu F_{xx} F_{yy} + 2(1-\nu)F_{xy}^2) \, dx \, dy$$

(17)

$$2T = \int_S F_x^2 \, dx \, dy$$

(18)

For a linear, unforced problem the function F is

$$F = \sum_{k=1}^{M} e^{i\zeta_k t} \Psi_k$$

(19)

The number M is, in theory, infinite; however, for the sake of numerics one needs to perform truncation up to a finite size. Influence of truncation will be briefly shown in the next section.

The function Ψ_k is chosen in the following manner:

$$\Psi_k = \sum_{m,n} a_{kmn} x_m^p y_n^q$$

(20)

where

$$X_m^p(x) = \cos \left(\frac{m\pi x}{L_x} \right) + \sum_{s=0}^{4} a_s x^s$$

(21a)

$$Y_n^q(y) = \cos \left(\frac{n\pi y}{L_y} \right) + \sum_{s=0}^{4} b_s y^s$$

(21b)

This represents a double modified Fourier cosine series. The polynomials $\sum_{s=0}^{4} a_s x^s$ and $\sum_{s=0}^{4} b_s y^s$ are chosen so that the boundary conditions (13b) are automatically satisfied. In this sense, a possible solution is

$$\sum_{s=0}^{4} a_s x^s = \frac{15(1+(-1)^m)}{L_x^4} x^4 - \frac{4(3+(-1)^m)}{L_x^4} x^3 + \frac{(3+2(-1)^m)}{L_x^4} x^2 - 1$$

(22)

and similarly for $\sum_{s=0}^{4} b_s y^s$. When Eq. (19) and (20) are inserted into (16), one obtains a scalar equation from which an eigenvalue problem can be extracted, i.e.

$$d^T (K - \zeta_k^2 M) d = 0; \quad d^T = [d_{00}, d_{01}, \ldots, d_{mm}, \ldots]$$

(23)

The explicit forms of the matrices K and M are rather involved and are not presented here.

Li [7] shows that the modified double cosine series approach remains valid in the case of general elastic support at the edges. This includes all the "classical" boundary conditions plus mixed and intermediate cases. Generally, one imposes the boundary conditions to be satisfied automatically by the displacement function, and then defines an eigenvalue problem of type (23) which produces the eigenfrequencies and the expansion coefficients

$$\zeta_k \cdot L_x L_y$$

Table 1: Comparison of clamped plate eigenfrequencies

<table>
<thead>
<tr>
<th>k</th>
<th>Model</th>
<th>Leissa</th>
<th>FD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.51</td>
<td>40.51</td>
<td>40.05</td>
</tr>
<tr>
<td>2</td>
<td>62.56</td>
<td>62.58</td>
<td>61.93</td>
</tr>
<tr>
<td>3</td>
<td>99.19</td>
<td>98.25</td>
<td>98.00</td>
</tr>
<tr>
<td>10</td>
<td>208.0</td>
<td>207.9</td>
<td>205.50</td>
</tr>
<tr>
<td>20</td>
<td>359.6</td>
<td>-</td>
<td>355.32</td>
</tr>
</tbody>
</table>

Leissa [6], as well those produced by Bilbao’s finite differences scheme [3]. The plate parameters are: $L_x = 0.6$ m, $L_y = 0.4$ m, $\rho = 7860$ kg/m3, $\nu = 0.3$, $h = 0.001$ m, $E = 2 \cdot 10^{11}$ Pa. The FD scheme presents 242×161 discretization points along the x and y directions, i.e. $dx/dy/(L_x L_y) = 2.6 \cdot 10^{-5}$. Table 2 gives three nondimensional Gamma coefficients $\Gamma_{k,k,k}$ for a plate with the same physical parameters but where $L_x = L_y = 0.3$ m. For this calculation, a total number $M = 81$ of Airy stress function modes was retained in definition (12). The finite difference scheme was run with 121×121 grid points, or $dx/dy/(L_x L_y) = 6.8 \cdot 10^{-5}$. Table 3 presents the convergence of the same Γ’s for different values of M, calculated using the modal approach. Finally, Table 4 presents the calculation for $\Gamma_{1,1,1}$ using the finite difference scheme, and it highlights the effects of truncation for different grid meshes. Numbers in brackets are the average calculation times for a basic MATLAB implementation. Note that, for the modal approach, most of the calculation time goes into the calculation of the norms $\|\Psi_k\|$. Once this is done, the actual calculation of each one of the Γ’s is much faster (about 0.1 s for $M = 81$). Thus, the calculation time per coefficient decreases with the total number of coefficients calculated.

The tables show good agreement between the data for the eigenfrequencies, with discrepancies of the order of a few percents. In addition, the calculation of the Γ’s shows the consistency of the modal approach. Convergence up to a desired value can be obtained for each of the Γ’s by retaining a sufficient amount of stress function modes.

4 Numerical results

Table 1 presents the clamped plate eigenfrequencies ζ_k obtained by retaining $M = 64$ modes along with those by
Table 3: Convergence of Γ's, modal approach

<table>
<thead>
<tr>
<th>M</th>
<th>$k = 1$</th>
<th>$k = 25$</th>
<th>$k = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>25.30 (~13s)</td>
<td>2.071 $\cdot 10^4$</td>
<td>7.748 $\cdot 10^4$</td>
</tr>
<tr>
<td>144</td>
<td>25.30</td>
<td>2.078 $\cdot 10^4$</td>
<td>7.761 $\cdot 10^4$</td>
</tr>
<tr>
<td>256</td>
<td>25.30</td>
<td>2.100 $\cdot 10^4$</td>
<td>7.922 $\cdot 10^4$</td>
</tr>
<tr>
<td>324</td>
<td>25.30 (~750s)</td>
<td>2.100 $\cdot 10^4$</td>
<td>7.922 $\cdot 10^4$</td>
</tr>
</tbody>
</table>

Table 4: Convergence of $\Gamma_{1,1,1}$, Finite Differences

<table>
<thead>
<tr>
<th>M</th>
<th>Grid pts = 38 \times 38</th>
<th>Grid pts = 86 \times 86</th>
<th>Grid pts = 121 \times 121</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>27.103 (~1s)</td>
<td>26.117</td>
<td>28.882</td>
</tr>
<tr>
<td>64</td>
<td>27.107</td>
<td>26.121 (~6s)</td>
<td>25.886</td>
</tr>
<tr>
<td>81</td>
<td>27.108</td>
<td>26.121</td>
<td>25.886 (~22s)</td>
</tr>
</tbody>
</table>

5 Free vibrations of nonlinear plate

In this section, the periodic orbits (also called the Nonlinear Normal Modes, NNMs) of the simply supported plate are computed, for the first two modes. The plate has got the following physical parameters: $L_x = 0.4$ m, $L_y = 0.6$, $\rho = 7860$ kg/m3, $v = 0.3$, $h = 0.001$ m, $E = 2 \cdot 10^{11}$ Pa. It is the same plate as the one used in [13] for the transition to turbulence. A numerical continuation technique (predictor-corrector with pseudo-arclength continuation, implemented in the software AUTO) is used for this task. The resulting amplitude-frequency plots display the nonlinear dependance of the frequency on the vibration amplitude, and give insight into the nonlinear dynamics of the plates, showing precisely the coupling and energy transfers that can be expected.

Figure 1 shows the result for the first mode, for a model including the first six modes, and up to a vibration amplitude of 6 times the thickness. The main branch, denoted B_1, shows a hardening behaviour, as it is usual for plates: the frequency increases with the amplitudes. For that branch, a strong non-resonant coupling with the fourth is observed, which is due to the presence of a term q_4^3 in the fourth modal equation for q_4. Hence q_4 is present with a noticeable amplitude, that is why on fig. 1, the main branch B_1 is denoted with B_{11} and B_{12}, the upper index indicating the modal coordinate involved. For $\omega = 1.15 \omega_0$, an instability occurs for the main branch B_{11}, and a resonant coupling with the second mode appears, resulting in the coupled B_{12} branch. A 1:3 internal resonance is here at hand, and branch B_{12} starts from zero up to an important amplitude. Following further the main branch B_1, new coupled solutions are found around $\omega \simeq 1.5 \omega_0$, and for a vibration amplitude of four times the thickness. The resonant coupling involves mainly the sixth mode, thus the branch is denoted as B_{16}. The resonant coordinate is the sixth one, B_{16}^6, and interestingly enough the sixth mode is coupled via a non-resonant term of the form q_6^3 with the third coordinate, which also appears in the plot, see B_{16}^3. Finally a coupled branch with mode 5, B_{15}, is also observed, but mainly leads to unstable solutions.

The amplitude-frequency relationship for the second mode is shown in Fig. 2. The retained model contains now the first eight modes. Once again, the main branch B_{21} shows a hardening behaviour, and a non-resonant coupling with the seventh mode is noticeable (B_{27}). Internal resonances lead to tongues of coupled states, with the fifth mode, B_{25}, and then with the eighth mode, B_{28}. The eighth mode is also non-resonantly coupled with modes 1 and 4, which appears in the branch B_{28}.

6 Conclusion

A general modal approach for nonlinear plates was presented. The particular case of a simply supported plate was taken under consideration. To this extent, a numerical solution strategy to compute the stress function was used, and the results were compared with similar results in the literature and with a finite difference scheme, finding consistent agreement. A few nonlinear coupling coefficients were calculated and their convergence was shown. Finally, bifurcation diagrams for free vibrations of the first two modes were plotted, and the internal resonances were explained in light of the specific weight of each of the coupling coefficients in the equations of motion. This model can serve as a basis for various applications: sound synthesis of gong-like instruments, nonlinear dynamics of a multi-degree-of-freedom system, in-
vestigation of wave turbulence in elastic materials [13].

References

