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The results of numerical modelling of sonic crystals with resonant array elements are reported. The investigated

resonant elements include plain slotted cylinders as well as various their combinations, in particular, Russian doll

or Matryoshka configurations. The existence of a separate attenuation mechanism associated with the resonant

elements, which increases performance in the lower frequency regime has been identified. The results show a for-

mation of broad band gaps positioned significantly below the first Bragg frequency. For low frequency broadband

attenuation a most optimal configuration is the Matryoshka sonic crystal, where each scattering unit is composed

of multiple concentric slotted cylinders. This system forms numerous gaps in the lower frequency regime, below

Bragg bands, whilst maintaining a reduced crystal size viable for noise barrier technology.

1 Introduction
Recent years have seen a growing interest in sonic crys-

tals [1, 2] and their potential for use as noise barriers, with

reported sound attenuation up to 20 dB [3] and 25 dB [4].

An advantage of sonic crystal noise barriers is that, by vary-

ing the distance between the scatterers, it is possible to at-

tain peaks of attenuation in a selected frequency range. The

relationship between the lattice parameter and operating fre-

quency suggests extremely large barriers will be required to

attenuate lower frequency noise such as traffic. We investi-

gate the effects of elastic wave propagation through a new

class of locally resonant sonic crystal (LRSC) with multi-

ple acoustic resonances, capable of broadening the range of

attenuation. The proposed LRSC forms broad attenuation

bands in the lower frequency regime and comprises concen-

tric slotted cylinders. The results of this work are presented

in full in Ref [5]. Wave propagation in a sonic crystal with

a Helmholtz resonator defect was studied by Wu et al. [6],

where the Helmholtz resonator is placed as a point defect

of the sonic crystal and exhibits local resonance phenomena.

Movchan et al. investigated the asymptotic analysis of an

Eigenvalue problem for the Helmholtz operator in a periodic

structure involving split-ring resonators and associated mul-

tistructures where the position of stop bands were deduced

[7]. It has been found that the behaviour of our resonators

with a large slot is best described by the standard formula for

Helmholtz resonators [8] even when arranged concentrically.

In the present paper an array of the resonant elements that

have broad resonances below the Bragg band gaps have been

studied. In particular the elements having a shape of slot-

ted cylinders and concentric configurations have been con-

sidered. The interaction between their resonances produces

band gaps and gives rise to phenomena that can lead to acous-

tic attenuation. The continuum band of the surrounding ef-

fective medium interacts with resonance states by hybridiza-

tion (mixtures of different waves states) giving rise to hy-

bridization gaps such as those found in three dimensional

solid phononic crystals [9] and experimentally in colloidal

films [10].

2 C-shaped LRSC

2.1 Eigenvalue Analysis
First we consider infinite arrays of locally resonant scat-

terers. Their band structures are obtained using the FEM

which was developed in the framework of Comsol Multi-

physics [11]. An advantage of using Comsol Multiphysics

to compute the acoustic band structure is the capability of

modelling more complex scatterer geometries. The structure

is assumed to be infinite and periodic in the direction x with

the period a1 and in the direction y with the period a2 and de-

scribed by two basis vectors: (a1, 0) and (0, a2). According to

the Floquet-Bloch theorem, the relation for the pressure dis-

tribution p for nodes lying on the boundary of the unit cell

can be expressed as:

p(�x + �a1 + �a2) = p(x) exp[i(kxa1 + kya2)], (1)

where x is the position vector in the unit cell and �k =
(kx, ky) is the Bloch wavevector. Considering the periodic

boundary conditions above allows the reduction of the model

to a single unit cell see Figure 1. Periodic boundary condi-

tions are applied to truncate the two-dimensional simulation

plane in the x and y directions, by reducing the system to

one unit cell. For a LRSC in a two-dimensional square array,

the unit cell (seen in Figure 1) is used as a basis for the cal-

culations. Analysis of the first ten Eigenfrequencies and the

corresponding Eigenvectors is computed. The Eigenvectors

are related to the pressure distribution of the mode. Figure

2 gives the computed band structure of a two-dimensional

locally resonant sonic crystal, comprising slotted tubes with

inner radius 5 mm, external radius 6.5 mm and slot width 4

mm arranged in a square lattice in air. The period is 22 mm.

We call each resonating inclusion, a C-shaped resonator.

Figure 1: Unit cell for a C-shaped locally resonant sonic

crystal with Floquet-Bloch boundary conditions described.

We note the appearance of a flat band in the band struc-

ture (Figure 2). Modes associated with a flat band should

have a group velocity equal to zero and exhibit strong spatial

localisation. In practice, such localised modes are often cre-

ated by inserting a defect in a periodic structure, i.e. creating

a cavity [6]. It is clear that the acoustic resonance owing to

the C-shaped inclusions leads to the appearance of this flat

band, forming a complete acoustic band gap that is induced

by the local acoustic resonance of each individual scatterer.

The introduction of the extra, flat resonance band could

lead to the construction of viable acoustic barriers in the low

frequency regime, which offer sound attenuation in all crystal

lattice planes. The flat band (originating from the localised

acoustic resonance seen in the band structure) is a large an-

ticrossing gap; this is generally referred to as a hybridization

gap in the context of sonic crystals [9]. Hybridisation band
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Figure 2: Finite Element computed band structure for a

C-shaped locally resonant sonic crystal.

gaps can form if the scattering objects constituting a sonic

crystal have strong resonance states in the frequency range of

interest. Such sonic crystal systems are best thought of as an

analogy of a tight-binding system of single resonators [12].

The identical resonators all have the same resonance frequen-

cies ωres if they are independent of each other. If interactions

are allowed we can expect a degenerate state to form sym-

metrically aroundωres. In the dispersion relation this interac-

tion occurs at the intersection of the flat resonance band with

the linear continuum band at frequencies close to ωres. This

frequency is independent of the structure of the sonic crys-

tal. The resonant frequencies are mainly affected by the size

and internal wave velocity of the scatterers. In general, the

two scattering regimes can overlap in a sonic crystal. Res-

onance scattering occurring in the same frequency range as

Bragg scattering favours the formation of broad (and there-

fore more likely omnidirectional) band gaps.

2.2 Transmission Analysis
The finite element method has been utilised to calculate

the pressure field behind a sonic crystal and to generate a

pressure map of the system at fixed frequencies. The Comsol

Multiphysics software is adopted to solve the acoustic wave

propagation in the sonic crystals. The equation used to anal-

yse the acoustic wave problems is expressed as

1

ρ0c2

∂2 p
∂t2
+ ∇ ·

(
− 1

ρ0

∇p
)
= 0. (2)

This reduces to a Helmholtz equation for a time harmonic

pressure wave excitation, p = p0eiωt

∇ ·
(
− 1

ρ0

∇p0

)
− ω

2 p0

ρ0c2
= 0, (3)

where ω = 2π f is the angular frequency. By solving

equation (3), the pressure field can be obtained.

A two-dimensional locally resonant sonic crystal system

in a 10 × 10 square lattice is described in Comsol Multi-

physics, with lattice parameter a = 22 mm, cylinder radius ro

= 6.5 mm ri = 5.0 mm and slot width s = 4.0mm. Material

parameters for this system are ρs = 7800 kgm−3, cs = 6100

ms−1, ρa = 1.25 kgm−3, ca = 343 ms−1 where subscripts de-

note the internal and external radius and air domain and steel

scatterers. In the case of the rigid scatterers in the LRSC sys-

tem, sound-hard boundary conditions have been applied; i.e.

the normal component of the velocity of the air particles is

zero in the walls of the cylinders. The radiation boundary

conditions at the exterior edges of the rectangular domain

are considered to be perfectly absorbing. In the simulations,

a rising tone noise source at the left edge of the domain, from

0 – 30000 Hz, is modelled as a radiation condition with pres-

sure source set to 1 Pa, which is equivalent to a 90 dB source.

For the numerical simulation, we use a triangular mesh of

approximately 106 elements, with at least ten elements per

wavelength to solve the wave equation across the domain.

Figure 3: (Colour online) Finite Element computed pressure

level maps for a C-shaped locally resonant sonic crystal at

3000, 4850, 9000 and 11000 Hz.

Computed pressure maps, taken at four frequencies of in-

terest, demonstrate the propagation of an acoustic plane wave

through the C-shaped LRSC. At frequencies below the active

frequency (3000 Hz), the incoming wave propagates as if the

system was a homogeneous medium. At 4850 Hz the com-

puted pressure map shows that the C-shaped LRSC attenu-

ates the wave in this region. The pressure map, see Figure

3, indicates that regions of maximum pressure are localised

to the inclusions, at the resonance frequency. Above the res-

onant frequency around 6500 Hz, the acoustic wave is free

to propagate through the system. As we approach the Bragg

band gap frequency of 9000 Hz, again we see the appearance

of band gap attenuation. Looking at the pressure maps it be-

comes apparent that the two regions of attenuation are con-

trolled by two different mechanisms; resonance and Bragg

scattering.

In the transmission spectrum, see Figure 4, additional at-

tenuation peaks can be observed (∼20000 Hz). If we com-

pare the location of these peaks with the computed band struc-

ture, the peaks can be attributed to anticrossing regions present

in the band structure. In general, such gaps originate from
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Figure 4: A comparison between Finite Element computed

band structure and Finite Element transmission simulation

for a C-shaped locally resonant sonic crystal.

level repulsion, when two bands of the same symmetry avoid

crossing each other. The appearance of these anticrossing re-

gions are beyond the scope of this investigation, but should

be investigated further to enhance the performance of the C-

shaped LRSC. The reader is directed toward a seminal paper

by Wu et al. [13] detailing this phenomenological effect. The

physical origin of these anticrossing gaps, is different when

compared with those induced by the acoustic resonance.

Figure 5, presents a comparison between the finite ele-

ment computed band structure, transmission spectrum and

that obtained using the experimental methods [15]. The over-

all agreement in general is good; the two distinct regions of

attenuation are presented by both spectra and corresponds

well to the computed band structure. The small increase in

Bragg band gap width are most likely to be attributed to the

finite crystal size effects in the transmission results, we can

use an analogy to line broadening in x-ray diffraction in fi-

nite crystal samples [14], to explain the increased band gap

widths obtained from that in the transmission measurements.

Figure 5: A comparison of Comsol computed band structure

and transmission measurements with experimental

transmission experiments for an locally resonant sonic

crystal system.

3 Matryoshka LRSC
The C-shaped tubes act as acoustic resonators which give

rise to a single flat band that extends across all high symme-

try directions and is located below the Bragg gap. Its position

is dependent upon the cavity dimensions and is independent

of the sonic crystal periodicity. For practical applications

of sonic crystals as noise barriers it is desirable to be able

to broaden the width of this resonance gap. One method to

achieve this is to include multiple resonator sizes and overlap

the individual resonance peaks. We have investigated mixed

arrays that display this ability [15] however, in order to save

space and reduce the overall barrier thickness we now pro-

pose a design of sonic crystal with resonators placed con-

centrically inside one another, extending the multistructure

describe by Movchan et al. [7]. We coin this the Matryoshka

(Russian doll) configuration. Specifically we investigate a

Matryoshka LRSC whose unit cell is defined with six con-

centric C-shaped resonators, all tuned to frequencies that lie

within 200 Hz of each other in the low frequency regime.

This is achieved by increasing the dimensions of the resonat-

ing inclusions and lattice parameter (see Figure 6).

Figure 6: Schematic of the unit cell used in band structure

calculations for the six concentric Matryoshka system.

Applying periodic boundary conditions, to replicate an

infinite array of these concentric inclusions in a square array

with lattice parameter a = 15.5 mm, the acoustic band struc-

ture can be computed. The dimensions of each C-shaped

resonator are designed so that they can be placed concentri-

cally inside each other. The largest C-shaped resonator has

an, external diameter = 132 mm, and an internal diameter =

109 mm with a slot width 31 mm. Subsequent concentric res-

onators have a scale factor of 1
1.3

, giving the smallest of the

nested resonators an external diameter = 22.5 mm, and an

internal diameter = 14.1 mm with a slot width 11.3 mm. Fig-

ure 7 presents the Finite Element computed band structure in

all high symmetry directions.

A

B

C

D

Figure 7: Finite Element computed band structure for the

six concentric Matryoshka system. A–D correspond to the

Eigenmode pressure distribution in Figure 8.

The band structure has been computed in the low fre-
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quency regime < 2000 Hz, corresponding to the first thirteen

Eigenvalues, by varying the wave vector in the first Brillouin

zone. It can be seen that a Matryoshka system, with many

individual resonating units, induces the formation of multi-

ple band gaps. Due to the periodic nature of these inclusions,

this sonic crystal system possesses the characteristic Bragg

band gaps, although it is hard to identify which bands are at-

tributed to the separate band gap formation mechanisms from

the band structure alone. A conventional sonic crystal sys-

tem with a lattice parameter a = 15.5 mm should possess a

Bragg band gap around 1120 – 1360 Hz, therefore the other

band gaps present in the band structure must be caused by

the acoustic resonance of each C-shaped inclusion. It can

be seen that the induced resonance band gaps are complete

acoustic band gaps, inhibiting wave propagation across all

lattice planes, without the need for a large packing fraction

as found with the characteristic Bragg band gap. For com-

A) B)

C) D)

Figure 8: (Colour online) Finite Element computed

Eigenmode pressure distribution: A) indicating individual

resonance of largest resonator B) second largest resonator,

C) multiple harmonic resonance of largest resonator, and D)

propagating mode, indicating a Bragg gap edge.

pleteness, Finite Element Methods have been employed to

obtain a transmission spectrum for this array, see Figure 9. A

10 × 10 array of the Matryoshka inclusions (each containing

six concentric C-shaped resonators) is described in Comsol.

The spectrum extends to 2000 Hz, and demonstrates the ap-

pearance of multiple regions of attenuation, owing to the in-

dividual resonances of the six C-shaped resonators as well as

a Bragg band gap.

The fact that we have large slot sizes which are aligned

concentrically with the same orientation, means that the asymp-

totic model in Ref [7] does not hold for our alternative struc-

ture. We can use a modified Helmholtz resonator equation

[8] to predict the location of each resonance gap, attributed to

the different sized inclusion. A comparison of the band gap

locations from Finite Element computation to the modified

Helmholtz resonator equation can be seen in ref [5] showing

good agreement.

Figure 8 presents the corresponding Eigenmode pressure

diagrams computed for the first two bands A) and B) respec-

tively. It can be seen that each individual resonator expe-

riences an increase in pressure inside the cavity, caused by

the acoustic resonance of each C-shaped inclusion. It should

be noted that multiple harmonic resonance gaps are formed,

shown in C) and induce the formation of extra gaps in the

band structure. We can confirm the existence of a Bragg gap,

by again studying the Eigenmode pressure distribution D).

It is clear to see that this band is attributed to a propagated

mode. This allows us to confirm the band gap formation

mechanism, either resonance or Bragg that is responsible for

each region of attenuation present in the frequency spectrum.

Figure 9: A comparison of the Finite Element computed

band structure with the Finite Element computed frequency

spectrum for a six concentric Matryoshka system.

For comparison, Figure 9 shows both the Finite Element

computed band structure, limited to the ΓX direction, and the

computed frequency spectrum. The frequencies at which the

band gaps occur in the band structure are in good agreement

with the regions of attenuation present in the transmission

spectrum. A small attenuation band is present in the trans-

mission spectrum at around 1700 Hz. At the corresponding

frequency in the band structure, an anticrossing region ap-

pears, induced by the level repulsion effect. Since the reso-

nances are very close in frequency to the frequency that sat-

isfies the Bragg condition, the two band gap regimes appear

to overlap in this Matryoshka sonic crystal. Resonance scat-

tering occurring in the same frequency range as Bragg scat-

tering favours the formation of broad band gaps.

4 Conclusion
The proposed Matryoshka LRSC offers a viable solution

to overcome the inherent dependence on spacing experienced

with conventional sonic crystal designs. It has been discov-

ered that such systems can form multiple resonance band

gaps in the lower frequency region, below that of Bragg for-

mation. These resonance bands can be combined to form

broad regions of attenuation, either by selecting close acous-

tic resonances or further by tuning the structure to combine

the characteristic Bragg band gap with the resonance band

gaps. This configuration is particularly suited for noise bar-

rier applications.
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