
Ultrasound Characterization of Mechanical Properties of
Nanometric Contrast Agents with PLGA Shell in

Suspension

F. Coulouvrata, K. Astafyevab, J.-L. Thomasc, N. Taulierb, J.-M. Conoira and
W. Urbachb

aCNRS, Institut Jean Le Rond d’Alembert - UMR CNRS 7190, Université Pierre et Marie
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Dispersion and absorption are examined for dilute suspensions of Ultrasound Contrast Agents of nanometric size
(nUCA), with typical radii around 100 nm. This new generation of contrast agents is designed for targeted delivery
of drugs. Compared to standard contrast agents used for imaging, particles are of smaller size to pass the endothelial
barrier, their shell made up of biocompatible polymer (PLGA) is stiffer to undergo a longer time life and they have
a liquid (PFOB) instead of a gaseous core. Ultrasound propagation in dilute suspension of nACUs is modelled by
combining i) a dilatational mode of oscillation assuming an incompressible shell with a visco-elastic behaviour of
Maxwell type (relaxation), and ii) a translational mode of oscillation induced by visco-inertial interaction with the
ambient fluid. Experimental measurements of the dispersion and absorption properties of nACUs solutions over
the 3-90 MHz frequency range are performed for various temperatures and concentrations. They allow to fit with
good accuracy three unknown parameters of the nACUs shell : the thickness, the Young modulus and the viscosity
(or equivalently the relaxation frequency). Obtained values are compatible with literature data and offer insight
into the behaviour of PLGA shells in suspension (Work supported by programme Emergence-UPMC).

1 Introduction
A nanometric Ultrasound Contrast Agent (nUCA) is a

new type of contrast agents currently investigated for nano-
medicine applications, especially targeted drug delivery mon-
itored by ultrasound [1, 2] or gene transfer. In the treatment
of cancer, targeted chemotherapy would reduce both severe
side effects and cell resistance. However, in comparison to
standard UCA used for imaging, nUCA have to be multi-
functional particles, simultaneously long-lasting ultrasound
contrast agents and tumor-targeted drug carriers. They must
be of nanometric size (radius less than 200 nm) to extravasate
the large gaps between the endothelial cells of the anoma-
lous vascularization of the tumor. They must have a suf-
ficient life-time after intravenous administration to sustain
pressure and mechanical stress and accumulate within the tu-
mor. The proper choice of the (biocompatible) material for
the particle shell is essential. The accumulation can be en-
hanced by decorating the shell with ligands targeting specific
pathological tissues [3]. At low ultrasonic levels, particles
must be sufficiently echogenic to be used as UCA. Higher
ultrasound levels should be able to trigger drug delivery, ei-
ther by breaking the particle shell, or by vaporizing the liquid
core. Among the various types of nUCAs currently investi-
gated, nanodroplets with a liquid perfluorocarbon (PFC) or
perfluorooctyl bromide (PFOB) cores have interesting sta-
bility properties [4]. Even though they have much smaller
echogenicity than microbubbles with a compressible gaseous
core excited close to their resonance frequency, they can nev-
ertheless be used for ultrasonic imaging. Biodegradable ma-
terial for the shell can be a polymer like PLGA (poly(lactide-
co-glycolide) acid), with surface phospholipids conjugated
with polyethylene glycol (PEG) [5] in order to make it stealth
to macrophages. For such materials, the ratio of the shell
thickness to the total radius cannot be much smaller than
0.25. Recently, thinner shells were obtained by using Flu-
orinated TrisAcryl Conjugates (FTAC) instead of PLGA [6].

The acoustical behavior of suspensions of such nanodrop-
lets with liquid cores remains mostly unexplored. Recent
experiments [6] indicate increased echogenicity for thinner
FTAC shells compared to thicker PLGA ones, and also a
dramatic change of behavior between micrometric (a few
microns) and nanometric (around 100 nm) sizes. Numeri-
cal simulations for micrometric objects [7] have been per-
formed by neglecting viscous absorption effects. However,
both viscous effects can be important in the acoustical prop-
erties of suspensions. For micrometric encapsulated bubbles,
considering a volumic model [8] valid for an incompressible
shell of finite thickness, shell viscosity has been shown to be

one of the key parameters governing ultrasound absorption
[9]. On the contrary, for rigid nanometric particles, visco-
inertial translational effects are known to be dominant on
ultrasound absorption [10, 11] and are easily measurable in
the medical frequency range [12]. In the present situation of
”large” nanometric droplets which are much less deformable
than resonant micrometric bubbles, the question arises which
mechanism is prevalent on the acoustical parameters of a di-
lute suspension: dilatational effects associated to the radial
deformation of the viscoelastic shell, or translational effects
associated to the visco-inertia of a quasi rigid particle em-
bedded in a viscous fluid ? The objective of the present study
is to answer that question.

2 Theoretical model
We consider a dilute suspension of nanometric contrast

agents Fig.(1), composed of a spherical shell of inner radius
R1, outer radius R2 = R and thickness h = R2 − R1. The shell
is assumed to be made of an incompressible, homogeneous
and isotropic material. We assume in a first step the shell
material satisfies a Kelvin-Voigt rheological behaviour:

σ = −pS I + σve = −pS I + 2GS ε + 2µS ε̇, (1)

where σ, σve I, ε and ε̇ are respectively the total stress, vis-
coelastic stress, unit, strain and rate of strain tensors. The
material is characterized mechanically by its modulus of rigid-
ity GS and viscosity µS . The shell encapsulates a core fluid of
density ρC and sound speed cC . Active principles, if any, are
located within that core. The particle volume is V = 4πR3/3
and its mass is mP. The ambient fluid is compressible and
viscous, with specific mass ρ, sound speed c, shear viscosity
µ and bulk viscosity ζ. Surface tension are respectively σ1
for the shell / core interface, and σ2 for the shell / ambient
liquid interface. The volume concentration of the particles
within the fluid suspension is Φ. For any quantity, index 0
designates its value at static equilibrium.

We use a multiphase homogeneous model with average
balance equations of mass and momentum, assuming an a-
coustic wavelength much larger than the particle radius. For
particles with radii around 100 nm, and acoustic frequencies
in the biomedical range 1-100 MHz, the smallest wavelength
is larger than 10 µm. Particles are assumed to be identical and
randomly homogeneously distributed within the suspension.
We note by p and v the mean pressure and velocity fields of
the ambient fluid , and vP the mean velocity field of the parti-
cles. The shell is impermeable : no mass exchange occurs be-
tween the particle and the ambient fluid. Thermal exchanges
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Figure 1: Particle geometry

due to a difference of temperature between the particles and
the fluid are neglected. This is a well satisfied hypothesis for
most liquid for which thermal effects are proportional to γ−1
where γ (the ratio of specific heats) is very close to 1. With
all these assumptions, the average field satisfies the following
balance equations of mass and momentum:

∂

∂t
[(1 − Φ)ρ] + ∇.[(1 − Φ)ρv] = 0 (2)

∂

∂t
[ΦρP] + ∇.[ΦρPvP] = 0 (3)

(1 − Φ)ρ
[
∂v
∂t

+ (v.∇)v
]
− ∇.Σ = −nf (4)

ΦρP

[
∂vP

∂t
+ (vP.∇)vP

]
= nf. (5)

One recognizes the usual mass (Eqs.(2-3)) and momen-
tum (Eqs.(4-5)) balance equations for each fluid and particle
phases, each phase being weighted by its volume fraction. In
Eq.(4), Σ designates the stress tensor within the fluid phase.
There is no source term in the mass equations because there
is no mass exchange. Momentum exchanges are described
by source terms with opposite signs because of action / re-
action principle. In the dilute approximation, the total force
undergone by a unit volume of the suspension is proportional
to i) the number of particles per unit volume n, and ii) the
force f exerted by the fluid on one single particle as if it were
alone. Note that no coupling term is introduced in the present
model, even though a volume variation can modify the par-
ticle translation [13]. However such coupling terms are non-
linear and are negligible in the linear acoustical regime. By
noting that Φ = nV and ρP = mP/V , Eq.(3) and Eq.(2) sim-
plify into:

ρPV∂n/∂t = −∇.[ΦρPvP]. (6)
(1 − Φ) ∂ρ

∂t + ∇.[(1 − Φ)ρv] = ρn ∂V
∂t −

ρ
ρP
∇.[ΦρPvP]. (7)

For waves of sufficiently small amplitude, the linearized
field equations are:

(1 − Φ0)
[
∂ρ/∂t + ρ0∇.v

]
= ρ0n0∂V/∂t − ρ0Φ0∇.vP (8)

(1 − Φ0)ρ0∂v/∂t − ∇.Σ = −n0f (9)
mP∂vP/∂t = f. (10)

For closure, these balance equations have to be completed
by models describing the stress efforts Σ within the fluid, the
evolution equation of the particle volume V and the force f
exerted by the fluid on one single particle. The stress tensor

is the one of a Newtonian viscous fluid characterized by its
bulk (ζ) and shear (µ) viscosities. These ones may be modi-
fied by the presence of particles but, in the dilute case, they
are almost identical to those of the pure fluid phase. Force
exerted by the fluid phase on a single particle in the linear
regime is given by the Faxen formula:

f = 6πRµ(v − vP) + 6R2 √πρµ
∫ t
−∞

∂
∂t′ (v − vP) dt′

√
t−t′

+ 2
3πR3ρ ∂

∂t (v − vP) + 4
3πR3 ρ ∂v

∂t . (11)

In the above expression, the first term on the r.h.s. is Stokes
viscous drag associated to a steady mismatch between the
fluid and particles velocities. The second one is the so-called
Basset-Boussinesq history force, taking into account the time
delay between the flow motion and the particle response. The
third one is the added mass effect, while the last one is the
Archimede force associated to the mass of fluid displaced by
the particle in an acceleration field. The first two terms are of
viscous origin (proportional to the ambient fluid viscosity),
while the last two ones are of inertial origin (proportional
to the mass of fluid displaced by the particle). Above ex-
pressions are valid for a solid particle. Different expressions
are used for instance for a bubble with a slip condition at
the interface. We will see in the present case that the par-
ticle translational effects related to this force are significant
only for relatively ”stiff” particles with little volume changes.
Hence, in case these effects are significant, the assumption
of an almost rigid particle is indeed well satisfied. Note the
three first terms on the r.h.s. are proportional to the veloc-
ity mismatch between the fluid and particle velocities, while
Archimede force depends only on the fluid velocity.

Finally, the model is completed by the Church model
[8] describing the motion of an incompressible viscoelastic
spherical shell of finite thickness surrounded by a viscous
liquid. The incompressible condition for the shell relates to
one another the inner and outer radius R2

1Ṙ1 = R2
2Ṙ2. The

radial motion of the shell is given by a generalized Rayleigh-
Plesset equation (dot denotes time derivative):

ρ
[
(R2R̈2 + 1.5Ṙ2

2)
]

+ ρS

[
(R1R̈1 + 1.5Ṙ2

1) − (R2R̈2 + 1.5Ṙ2
2)
]

= pC(t) − p(t) − 2σ1
R1
−

2σ2
R2
− 4µ Ṙ2

R2
− 4µS

(
Ṙ1
R1
−

Ṙ2
R2

)
−4GS

(
1 − R1eq

R1

) [
1 −

(
R1
R2

)3
]
. (12)

The first term on the l.h.s. describes the inertia of the am-
bient fluid. Compressible correction is here negligible. The
second term is for the shell inertia. The first two terms on the
r.h.s. are the pressure forces exerted by the inner (core) and
outer ambient fluids. Both can be assumed to be spatially ho-
mogeneous because the particle radius is much smaller than
the acoustic wavelength. The next two terms are the effects
of the inner and outer surface tensions. Then come the outer
fluid viscosity and the shell viscosity. The last term is the
shell elasticity. Because particles are immersed within an
ambient fluid, they may be in a pre-stressed state. Their ac-
tual static radius R10 may differ from their mechanical equi-
librium radius R1eq. This last one is easily computed by ap-
plying Eq.(12) in the static case. Note that Church model is
obviously fully nonlinear. However, other strongly nonlinear
mechanisms may occur for contrast agents like shell buck-
ling or breaking [14]. As we will consider here only a linear
behaviour, such effects can be ignored.
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3 Dispersion relation
The dispersion relation for an acoustic wave propagating

in such a medium can easily be obtained after linearization:(
k
k0

)2

=

 1 − Φ0

1 − i(1 − Φ0)ωτV
1−D
1+T

 (1 − D)
(

1 + rT
1 + T

)
(13)

with k0 = ω/c the wave number in the ambient fluid and:

ε = h0/R10 (14)
A(ω) = −(4π/3)R3

0ρ0i (15)

B(ω) = 6πR0µ + 3π
√

2ρ0µωR2
0(1 − i) + A/2 (16)

τV = = (4µ/3 + ζ) /(ρ0c2) (17)
r = ρP/ρ0 (18)

T (ω) = Φ0/(1 − Φ0) × (B + A)/(B + rA) (19)
D(ω) = Φ0/(1 − Φ0) × 3ρ0c2/(R0C(ω)). (20)

Church model Eq.(12) yields a linear relation between
applied pressure and particle radius with coefficient:

C(ω) = ρ0R0ω
2
(
1 +

ρS

ρ0
ε

)
− 3ρC0

c2
C

R0
(1 + ε)3 (21)

+4i
ω

R0

(
µ + µS ((1 + ε)3 − 1)

)
−

2
R2

0

(
σ2 + σ1(1 + ε)4

)
−4

GS

R0

(
(1 + ε)3 − 1

) [R1eq

R10
−

3
(1 + ε)3

(
1 −

R1eq

R10

)]
.

The geometrical parameter ε is the ratio of the shell thick-
ness to its inner radius. Time τV measures bulk absorption
of sound in the ambient fluid, while r is the ratio of the parti-
cle density to the ambient fluid density. Translational effects
due to the viscous forces exerted on the particles (considered
as almost rigid) are described by coefficient T . Dilatational
effects due to the change of particle volume are described by
coefficient D. In the dilute approximation, both of them are
proportional to the particle volume fraction Φ0 = n0V0. In
the case of no particles (Φ0 = T = D = 0), and because in
the considered frequency range ωτV << 1, one recovers the
usual dispersion relation of a viscous fluid k = k0 + iω2τV/2c.
If bulk absorption is neglected (τV = 0), there is no trans-
lational effect for particles of same density as the ambient
fluid (r = 1). This is due to Archimede force. In particular,
rigid particles of density equal to the ambient fluid oscillate
in phase with this one.

If the shell is made up of a viscoelastic fluid which satis-
fies a rheological behaviour of the Maxwell type, one gets:

σve + τRσ̇
ve = +2µS ε̇. (22)

with τR the relaxation time. At low frequencies, the shell
material behaves as a viscous fluid and elastically at high
frequencies. The low frequency viscosity µS and the high
frequency rigidity modulus GS are related by GS = µS /τR.
Indeed, PLGA is as a glassy polymer [15], a class of mate-
rial exhibiting relaxation process(es) which are described in
its most simple way by a Maxwell viscoelastic model . In that
case, the model of Church can be modified [16]. Lineariza-
tion yields the same expressions as for the Kelvin-Voigt case,
except the expression for coefficient C which is now:

C(ω) = ρ0R0ω
2
(
1 +

ρS
ρ0
ε
)
− 3ρC0

c2
C

R0
(1 + ε)3 (23)

+4i ωR0

(
µ +

µS
1−iωτR

((1 + ε)3 − 1)
)
− 2

R2
0

(
σ2 + σ1(1 + ε)4

)
.

4 Choice of a reference case
To quantify the relative importance of the various mech-

anisms, we consider a reference case. The ambient fluid
(water) and liquid core (PFOB) have sound speeds equal to
respectively 1500 m/s and 750 m/s, and densities equal to
1000 kg/m3 and 1930 kg/m3. The water shear viscosity µ is
1 mPa.s and the bulk viscosity ζ is 2.41 mPa.s. The volume
concentration of the nanodroplets is chosen equal to 1%, and
the frequency range is the medical one 1-100 MHz.

The material of the nACU shell is PLGA (50 % PLA to
PGA ratio - density 1350 kg/m3). One outer radius R0 =

75 nm will be examined, and the shell thickness chosen equal
to 10% of the outer radius. Little is known about viscoelas-
tic properties of the PLGA. A few experiments have been
performed, with elastic moduli in the range 10 to 100 MPa
[17]. A recent experiment using an atomic force microscope
(AFM) [18] has shown that the Young modulus of polymer
microspheres with nanometric thickness can be strongly de-
pendent on the shell thickness, with about 1 order of mag-
nitude variation (from 2 to 20 GPa) when the shell thick-
ness decreases from 45 to 15 nm. Several possible expla-
nations can be provided: a morphological and molecular re-
structuring of polymer chains under confinement, or an in-
creased influence of surface tension and / or gradient elastic-
ity. Given that uncertainty, it has been chosen here to perform
a parametric study by varying the shell mechanical proper-
ties. In the reference case, we select a value GS = 60MPa
and a shell viscosity µS = 1Pa.s. For the Maxwell rhe-
ological model, this corresponds to a relaxation frequency
fR = 1/(2πτR) = 10MHz. Note these values are typical for
polymer-encapsulated air bubbles [9] and compatible with
the few data on PLGA. Moreover, they give a shear wave ve-
locity cT =

√
GS ρS = 211m/s, much smaller than measured

compression wave velocities cL [19] (in the range 1900 to
2400 m/s in the temperature range [0 − 60◦C], with a sharp
transition at the glass transition), in agreement with the in-
compressible assumption.

For the selected values, one can estimate the magnitude
order of various terms in the expression of C(ω) (unit Pa/m)
for Kelvin-Voigt rheological model. Effects of core com-
pressibility, surface tension and shell elasticity are indepen-
dent of frequency. Core compressibility for PFOB gives a
value about 7 1015 Pa/m. A liquid core has a very high
impedance relative to gas, which strongly reduces the imag-
ing contrast relative to gaseous microcapsules. The magni-
tude order of shell elasticity is slightly smaller, about 5 1014

Pa/m. For more rigid materials with higher modulus of rigid-
ity (of the GPa order), it could however be comparable or
even dominant. Hence shell elasticity has to be taken into
account. Little is known about the value of surface tensions.
As their effect is independent of frequency, it could be dis-
criminated from the elastic one only by varying in a con-
trolled way the radius of the particle while keeping the thick-
ness ratio constant, something very difficult to perform at the
nanometric scale. For the reference case and a ”reasonable”
interfacial tension of 0.1 Pa.m, one gets a contribution to C
about 2 1013Pa/m, about one or two orders of magnitude
smaller than elasticity / core compressibility. Even though
one cannot rule out they could play a significant role for
smaller and thinner particles [18], they would anyway sim-
ply add to elasticity and contribute to an apparent increase
of shell rigidity. For these reasons, we will assume here
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σ1 = σ2 = 0. The static core and ambient liquid pressures
are also chosen equal, so that the nanocapsule is initially not
prestressed R1eq = R10. Inertia terms ρ0R0ω

2 are negligible
in all cases because of the small particle size. On the con-
trary, effects of shell viscosity are about 12ωµS ε/R0, taking
values 5 1012Pa/m at 1 MHz, 5 1013Pa/m at 10 MHz and
5 1014Pa/m at 100 MHz. Because of the chosen Kelvin-
Voigt model, they increase linearly with frequency, and are
comparable in order of magnitude to other mechanisms only
at high frequencies. However, because they are the only non
negligible term with an imaginary part, they will control the
part of the absorption that emanates from dilatational effects,
and are to be taken into account. On the contrary, influence
of water viscosity is negligible.

5 Analysis of the reference case
Fig.(2) shows the sound velocity dispersion with frequency,

and Fig.(3) the absorption coefficient (in dB/m) variation with
frequency for particles with radius R0 = 75 nm. The absorp-
tion coefficient in the low frequency range ( 0 − 20 MHz) is
zoomed on Fig.(4). Black lines display the overall effect. To
identify the physical origin of the mechanisms of sound dis-
persion and absorption, magenta lines show the effect of wa-
ter viscosity only (D = T = 0), red lines show the dilatational
effects only (T = τV = 0), and blue lines the translational ef-
fects (D = τV = 0). When only dilatational / translational ef-
fects are considered, we label the absorption coefficient ”D”
or ”T”. For the dilatational and total effects, solid lines are
for the Kelvin-Voigt model, and dashed ones for the Maxwell
model. When water viscosity only is taken into account, one
recovers the quadratic increase of absorption with frequency
Im(k) ≈ ω2τV/2c0. Note in this case the sound speed of the
suspension cφ ≈ c0/

√
1 − Φ0 is slightly increased (of about

0.5%, or 7.6 m/s) compared to pure water because of the
presence of rigid particles that decreases its compressibility.
On the contrary, taking into account particles change of ra-
dius (red lines) tends to decrease the sound speed because of
the higher compressibility of PFOB relative to water. Con-
sidering shell viscosity, one can see that the ”D” absorption
coefficient is also independent on the particle radius, is pro-
portional to shell viscosity and varies as the square of fre-
quency for the Kelvin-Voigt model as is visible on red curves.
On the contrary, that coefficient shows a strong dependence
on capsules thickness. For the Maxwell model, the shell be-
haves quadratically with frequency as for the viscous case
only for frequencies smaller than the relaxation frequency
f << fR(= 10MHz). For higher frequencies, the ”D” ab-
sorption coefficient tends to saturate as the medium behaves
mostly as an elastic one. However, even in that case, because
of the dependence of visco-elastic terms with 1/R0 in the
expression of C, the related absorption coefficient remains
independent on particle radius. Translational effects (blue
lines) also induce some dispersion effects at low frequen-
cies. A characteristic frequency is given by fT = µ/(2πR2

0ρ0),
at which steady viscous Stokes drag and Basset-Boussinesq
history force are of same amplitude. That frequency is equal
here to about 28 MHz for particles of radius R0 = 75nm.
For frequencies much below fT , the ”T” absorption coef-
ficient is proportional to the square of both the frequency
and the particle radius. Such behavior can be observed on
Fig.(4), with quadratic dependence of absorption with fre-
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Figure 2: Sound velocity in the reference case. R0 = 75nm.
See text for colour code.

0 10 20 30 40 50 60 70 80 90 1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

f (MHz)

al
ph

a 
(d

B/
m

)

Figure 3: Sound absorption in the reference case.
R0 = 75nm. See text for colour code.

quency up to about fT /3 and larger translational absorption
for larger particles at the same frequency. For frequencies
much above fT , an asymptotic expansion would lead to an
absorption coefficient proportional to the square root of the
frequency. However, such regime can be observed only when
Archimede force is much higher that Basset-Boussinesq his-
tory force, e.g. for frequencies higher than 20 fT that are
out of the considered range. Hence, in the frequency range
[ fT − 20 fT ], we are in an intermediate range where Stokes
drag, Basset-Boussinesq history force, added mass effect and
Archimede force are more or less of about the same order of
magnitude. This gives a frequency dependence of the ”T”
absorption coefficient that is almost linear (in between power
two and power half), and a weak dependence on radius.

Concerning the absorption coefficient, the reference cases
have been selected so that all effects are of the same order
of magnitude. In the low frequency regime, one observes
a quadratic dependence with frequency for all effects. As
for sound speed, dependence with volume fraction is lin-
ear. Dilatational part is dependent on relative thickness and
shell viscosity, while translational part is dependent on rela-
tive thickness and particle radius. For the considered radius
R0 = 75 nm, the translational and dilatational parts are of the
same order of magnitude in the low frequency regime 1-10
MHz. However, such hierarchy may be different for differ-
ent materials depending on the effective value of the shell
viscosity µS . In the high frequency regime, because transla-
tional effects are almost linear, dilatational effects and water
bulk viscosity become dominant.

6 Preliminary experiments
Ultrasound pulse propagation is measured under thermal

control in transmission in a cylindrical cell of varying length
filled with the suspension. Nanocapsules are made of a PLGA-
PEG shell encapsulating a PFOB liquid core [4]. Initial vol-
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Figure 4: Zoom of Fig.(3) - frequency range 1-20 MHz

ume fraction of 2% is decreased after dilution. Mean diame-
ter is estimated by Dynamic Light Scattering (DLS) or Trans-
mission Electron Microscopy (TEM) to be around 100nm.
Time windowed pulses are used to ensure free space propa-
gation and get measurements independent of the cell bound-
aries. Repeated acquisition for several distances of propaga-
tion yields an absolute value of the phase velocity and atten-
uation. This technique removes indeterminacies in electronic
or acoustic delays inherent to the design and set-up of trans-
ducers. The accuracy relies mainly on the precision of the
length variation of the cell. This last parameter is presently
controlled by a micrometer with manual linear stage.

On Fig.(5), we present a comparison between the above
theoretical model (smooth solid lines) and a set of measure-
ments (noisy solid lines) for the absorption coefficient and for
three volume fractions (0.5% black, 1% red and 2% blue).
The green curve is the attenuation of the pure liquid (wa-
ter), and is presented as a reference case. Measurements are
performed at two different temperatures (25◦C and 37◦C),
showing significant differences in the viscoelastic properties
of the PLGA-PEG shell. Mechanical properties of the shell
(relative thickness, Young modulus and viscosity) are esti-
mated through a best fit procedure between the model and
the measurements. Maxwell relaxation model turns out to
provide a better fit with measurements than the Kelvin-Voigt
model. Relative thickness is estimated to be around 21%,
in relatively good agreement with 25% thickness estimated
from mass conservation assuming all products have reacted
during the chemical reaction used for the particle synthesis.
Best fit shows a sharp modification of the mechanical shell
parameters from 25◦C to 37◦C. In the first case (25◦C), shell
viscosity is estimated to be 1.86 Pa.s and Young modulus
1.65 GPa. In the second case, (37◦C), shell viscosity is es-
timated to be 1.1 Pa.s and Young modulus 0.2 GPa. This
sharp softening of the material may indicate the temperature
37◦C is not very far from the glass transition.
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