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The frequency dependence of shear wave attenuation in water-saturated glass beads and sand contains 
distinguishable frequency bands in which different power laws apply. The bands are separated by relaxation 
frequencies. This is unlike the case of the dry granular medium, which is known to be proportional to the first 
power of frequency. The Biot-Stoll model of wave propagation in porous media captures the lower relaxation 
frequency, which is driven by a relaxation process in the relative motion between the pore fluid and the granular 
frame. A modification that includes squirt flow at the grain contacts is necessary to capture the higher relaxation 
frequency, which is a consequence of a relaxation process in the fluid motion within the grain contact region. 
There is evidence to suggest that the viscosity of the thin fluid film in the grain contacts may deviate from that of 
the bulk fluid due to ionic forces. Comparisons are made to published experimental measurements.  

1 Introduction 
One of the most influential references on shear wave 

propagation in marine sediments is Hamilton 1976 [1], in 
which the shear wave speed is assumed to be approximately 
constant and shear wave attenuation is “proportional to the 
first power of frequency”. It is based on the published 
measurements of shear waves that were available at the 
time [2]. The model belongs under the “constant-Q” 
category.  

A brief review of the different definitions of attenuation 
is useful [1]. Given a shear wave of the form, 

                        u= Aei −ωt+ksox( )−αsx  (1) 
where u is the transversal particle displacement, A the 
arbitrary amplitude, kso the real part of the wavenumber, αs 
the attenuation (Nep/m), x the distance in the wave 
direction, ω the frequency (radians/s), and the subscript “s” 
is used to denote shear wave. The wave speed cs is given by 
                              cs =ω / kso   (2) 

The quality factor Q, is defined as the loss tangent, and 
for small attenuation values, it is approximately related to 
attenuation divided by frequency. Thus, if attenuation is 
proportional to the first power of frequency, then the value 
of Q would be independent of frequency. 
                              1 /Qs = tan(φ) ≈ 2αscs /ω   (3) 

Measurements by Stoll [3] using a resonant column 
apparatus, in the frequency band from 200 Hz to 2 kHz, 
indicated that the constant-Q model may be applicable to 
dry sand, but not water-saturated sand, as illustrated in 
Figure 1.  

 

Figure 1: Measurements of attenuation in dry and water-
saturated coarse Ottawa sand from [3]; 1 mm mean grain 

diameter. 

This result was obtained using a coarse sand with a 
grain size of 1 mm. In Figure 2, measurements with smaller 
grain sizes, 0.3 and 0.03 mm, suggest, that there is some 
grain size dependence. At a grain size of 0.03 mm, there is 
no significant change in 1/Q.  

For the coarser grains, the value of 1/Q should not be 
expected to increase indefinitely, therefore it may reach a 
maximum or saturation value, and it may even decrease at 
higher frequencies. This can be observed in measurements, 

in the band 2 kHz to 20 kHz in an open sand box, by Bell 
[4], as illustrated in Figure 3. The water-saturated sand 
clearly shows 1/Q decreasing with frequency, while the dry 
sand shows an approximately constant Q. 

 

Figure 2: Measurements of attenuation in water-saturated 
sand from [3] using different grain sizes. 

 

Figure 3: Measurements of attenuation in dry and water-
saturated Panama City sand from [4]; 0.3 mm mean grain 

diameter. 

 
This paper addresses, in particular, the case of the 

water-saturated coarse sand, in which there is significant 
change in the value of 1/Q as a function of frequency. 

2 Frequency dependence 
There is a set of measurements by Brunson [5] that 

straddles the peak frequency. It shows both the increase in 
1/Q at the lower end of the frequency band, and the 
decrease at the higher end. Both glass beads and sands were 
used. The measurements on a sample of glass beads are as 
shown in Figure 4. The average value of the measured 1/Q, 
with plus and minus one standard deviation bars, are shown 
as a function of frequency. A significant part of Brunson’s 
dissertation was to make the measurements and compare 
them with Biot’s theory. The parameters of the Biot model 
[6], [7], as reformulated by Stoll [8] are shown in Table I. 
The grain and fluid densities and bulk moduli are taken 
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from standard tables for the glass beads and water, 
respectively. The viscosity is that of water at room 
temperature and pressure. The permeability and the 
porosity were measured by Brunson [5]. The pore size and 
tortuosity were estimated from porosity and grain size [8] 
[9]. The shear modulus (real part) was adjusted to match the 
measured shear wave speed of 225 m/s. The frame bulk 
modulus has no effect on the shear speed but it is listed in 
the table for completeness. In the original Biot model, the 
last two parameters in the table, the log decrements, were 
set to zero. A comparison with the measurements gave a 
very poor fit, as shown by the dashed line in Figure 4. 
Following Stoll [3], Brunson adjusted the value of the shear 
log decrement to get the best fit, as shown by the solid line 
in the figure. The bulk log decrement has no effect but it is 
listed for completeness.  

 

Figure 4: Measurements of attenuation in water-saturated 
glass beads, mean values and plus, minus one standard 
deviation bars, from [5] compared with the Biot-Stoll 
model, with and without a shear log decrement (δμ). 

Table 1: Biot-Stoll parameters 
 

Parameter Value units 
ρs  Grain density 2420 Kg/m3

�r  Grain bulk modulus 36 GPa 
ρf  Fluid density 1000 Kg/m3

kf  Fluid bulk modulus 2 GPa 
β  Porosity 0.355  
η  Viscosity 0.001  
κ  Permeability 110 μm2 
ap  Pore size 70 μm 
c  Tortuosity   1.65  
μo Frame shear modulus  0.087 GPa 
Kbo Frame bulk modulus - GPa 
δ μ   Shear log decrement 0.25  
δ   Bulk log decrement -  

 

3 Modified BICSQS and BIMGS 
In sand and sandstones, it was realized that the fluid 

film at the grain-grain contact may have an important effect 
on the frame moduli. As the frame stress increases, the fluid 
film in the grain-grain contact may be “squirted” out. This 
approach lead to the Biot and squirt flow (BISQ) model by 
Dvorkin and Nur [10] for sandstones. A similar model was 
developed for unconsolidated sand, based on the Biot 
model, with contact squirt flow and shear drag (BICSQS) 
[11]. It was followed by a more rigorous derivation, called 
Biot model with gap stiffness (BIMGS), by Kimura in 2006 
[12]. In the modified BICSQS, some errors in the original 
model are corrected, and the more rigorous form from 
BIMGS are used for the fluid gap stiffness. 

3.1 Grain contact model 
The contact between grains of sand or glass beads may 

be considered as the contact between two rough surfaces, as 
illustrated in Figure 5. For the purpose of modeling, the 
contact region is idealized as a solid contact surrounded by 
a circular, thin fluid film. 

 

Figure 5: Idealized contact between grains: a solid contact 
surrounded by a thin fluid film 

The tangential and normal contact stiffnesses, St and Sn, 
from [11] and [12] may be expressed in terms of the sum of 
the solid and fluid components.  

                               St = Sto +Stg = Sto − iSto
ω
ωμ

 (4) 

                       Sn = Sno +Sng = Sno +Sg 1− κaJo(κa)
2J1(κa)
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The subscripts “o” and “g” refer to the contributions from 
the solid contact and the fluid film in the gap, respectively.  
In the case of the tangential stiffness, the fluid film causes a 
viscous drag, represented by an imaginary term that 
increases with frequency. In the normal stiffness, the fluid 
film contribution is more complicated. It is modeled as a 
complex reactive force caused by squirt flow. The stiffness 
term Sg is the asymptotic stiffness of the fluid film as 
frequency tends to infinity. At which point, the fluid film, 
unable to respond to the stress variations, is effectively 
immobilized and behaves as a spring. From [12], it is given 
by, 
                              Sg = πkf a

2 / h  (6) 
where a is the radius of the fluid film, h the fluid film 
thickness, and kf the fluid bulk modulus. The argument κa 
may be expressed in terms of a bulk relaxation frequency, 
ωk, where [12] 
                              κa= −iω /ωk   (7) 

                              ωk = 2π
kf

12η
h
a
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2

= 2π fk   (8) 

The relaxation frequency ωk is a function of the aspect ratio 
(h/a) of the fluid film, fluid bulk modulus kf and viscosity 
η. Assuming that the solid component behaves as a 
Hertzian contact, there is a relationship between the solid 
components of contact stiffness through the Poisson’s ratio 
of the grain material. 

                            Sno = Sto
2−ν

2(1−ν )
  (9) 

From the above expressions, the complex, frequency-
dependent macroscopic frame moduli, Kb and μ, may be 
formulated using standard expressions for a granular 
medium of spherical grains of constant size [13], 
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          Kb =
n(1− β)
12πRg

Sn = Kbo +Kb 1− κaJo(κa)
2J1(κa)
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                  μ = μo +μg =
n(1− β)
20πRg

(Sn +1.5St )  (11) 

where n is the average number of grains per unit volume, Rg 
the grain radius, and β the porosity. As before, the subscript 
“o” refers to the contributions from the solid contact which 
is static, and “g” refers to contributions from the fluid film 
in the gap, which is frequency dependent.  The frame 
moduli are used in the standard Biot-Stoll equations to 
solve for the shear wave attenuation and speed. The value 
of the grain Poisson’s ratio is from tables. The values of μo, 
Kg, and fk were adjusted to obtain the best fit to the 
measured attenuation curve and wave speed. The best fit 
attenuation curve is shown in Figure 6, and the parameter 
values are shown in Table 2. The value of the shear 
relaxation frequency ωμ was so high that it could be 
ignored. 

 

Figure 6: Measurements of attenuation in water-saturated 
glass beads: mean values, and plus, minus one standard 
deviation bars, from [5] compared with the Biot-Stoll 

model, with and without a shear log decrement (δμ), and the 
modified BICSQS/BIMGS model. 

Table 2: Modified BICSQS and BIMGS parameters. 

Parameter Value Units 
ρs  Grain density 2420 Kg/m3

�r  Grain bulk modulus 36 GPa 
ρf  Fluid density 1000 Kg/m3

kf  Fluid bulk modulus 2 GPa 
β  Porosity 0.355  
η  Viscosity 0.001  
κ  Permeability 110 μm2 
ap  Pore size 70 μm 
c  Tortuosity   1.65  
μo Static frame shear modulus  0.087 GPa 
ν  Grain Poisson’s ratio 0.08  
Kg Asymptotic fluid contribution 0.086 GPa 
fk  Bulk relaxation frequency 1800 Hz 

 

3.2 Fluid viscosity and film thickness 
Equations (6) and (8) may be inverted to give 

expressions for the dimensions of the fluid film. 

                              h=144
ηKg fkRg
kf

2n(1−β )
  (12) 

                              a=
KgRg
n(1− β )

1728η fk
kf

3   (13) 

If the values from Table 2 were used in these equations 
to invert for the fluid film dimensions, h and a, the result is 
approximately 0.0002 and 2 nm (nanometers), respectively. 
It is observed that the value of the fluid film thickness, h, is 
problematic because the width of a water molecule is about 
0.3 nm. Since the fluid is water, it is unphysical for the 
water film to be several orders of magnitude smaller than a 
water molecule. 

The solution was found in the field of microfluidics. 
Recent papers by Goertz, Houston and Zhu [14] and Riedo 
[15] show that the viscosity of a thin film of water, 
confined by hydrophilic surfaces such as silica, is increased 
by several orders of magnitude as the film width is 
decreased below a few nanometers. Using the data in 
Goertz, Houston and Zhu, the viscosity of water as a 
function of film thickness was constructed as shown in 
Figure 7. 

 

Figure 7: Viscosity of a thin film of water as a function of 
the film thickness (gap width) based on measurements by 

Goertz, Houston and Zhu [14] in blue, and the straight line 
from Eq. (14) in black. 

Equations (12) and (13) may be rearranged to give 
viscosity as a function of film thickness,  

                              η = h
kf

2n(1− β )
144Kg fkRg

  (14) 

This straight line intersects the curve of viscosity as a 
function of film thickness to give the effective viscosity in 
the fluid film and the physical film thickness. The results 
are tabulated in Table 3. 

Table 3: Modified BICSQS and BIMGS parameters. 

Parameter Value Units 
ηe  Effective film viscosity 9.1 N s/m2 
h   fluid film thickness 1.7 nm 
a   fluid film radius 170 nm 

 

4 Conclusion 
It is shown from published measurements that the shear 

attenuation in dry sands may be approximated as a constant 
Q process. In water saturated sands and glass beads, 
however, this approximation is inadequate. The value of 
1/Q is observed to change with frequency – increasing with 
frequency at low frequencies, and decreasing with 
frequency at high frequencies. Measurements by Brunson 
[5] were chosen for comparison with theory because they 
cover the increase with frequency, the peak and the 
decrease at higher frequencies. Using measurements by 
Brunson, it is shown that basic the Biot theory does not 
provide a good match. The Stoll approach, in which loss 
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mechanisms are injected by making the frame moduli 
complex, can be made to fit the measurements, but only in 
an average sense. The modified BICSQS/BIMGS model, 
which is an extension of the Biot model in which the frame 
moduli is governed by the squirt flow of the fluid film 
trapped within the grain-grain contact, is able to give a 
better fit. 

 
This model predicts a direct connection between the 

macroscopic frame moduli and the dimensions of the fluid 
film at the grain-grain contact. In the process of fitting the 
model to the measurements, it became apparent that the 
microfluidic effects, that significantly increase the viscosity 
in thin films of water, needed to be taken into account. 
Without the microfluidic effects, the estimated water film 
thickness was too small to be physically possible. With the 
microfluidic effects, the estimated dimensions of the water 
film were reasonable. Therefore, it is deduced that 
microfluidic effects play a significant role in the acoustics 
of water saturated glass beads and sand. 
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