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Abstract Following along the line of the theory proposed initially at CFA-2010, this contribution 
presents the recent progress achieved in this trend of research. Here the focus is put on various 
cases of SH waves with perturbing effects due to the elastic non-linearity of the substrate, its 
viscosity, and the presence of a thin active film glued on top of the substrate. The problem of 
transmission-reflection at an interface between two elastic media is also considered as an example 
exhibiting the alternate wavelike and particle-like pictures of the solution. This interface may be a 
discontinuity with possible delamination, a slab of finite thickness, or a multi-layered structure.   

 
 
1  Introduction      
 
     In recent works (e.g., [1], [2]), influenced by the 
theories of phonons in solid state physics and of 
solitons in mathematical physics, we have 
expanded a theory of quasi-particles that are 
associated with surface acoustic wave (SAW) 
modes. These particles we nicknamed “grains of 
SAWs”. This association akin to a dualism is 
obtained, once we know the continuum solution of 
the SAW problem, by exploiting the so-called 
canonical equations of conservation of wave 
momentum and energy - see [3] for this general 
concept. These equations are obtained by any 
means (e.g., application of Noether”s invariance 
theorem [4] in the case of nondissipative systems 
for which we know the Lagrangian; or direct 
manipulation of the standard balance laws in the 
presence of dissipation). The applied methodology 
consists in evaluating the expression of the “mass” 
and the accompanying “kinetic energy” of the 
associated quasi-particle. This is done by 
integrating the local conservation laws of wave 
momentum (cf. Brenig [5] for this notion) over a 
material volume that is representative of the studied 
wave motion. In propagation space this amounts to 
an average over one wavelength. Then one has to 
substitute for the known analytical wave solution in 
the resulting equations 
 
2  Reminder: notions of conservation 
law, wave momentum and quasi-particle 
 
    There exists a fundamental difference between 
field equations that govern individual degrees of 
freedom of a physical  system and conservation 
laws that pertain to the whole considered system. 
This difference was first made clear by Emmy 
Noether in her celebrated theorem of 1918 [4]. For 
instance, in the standard Cartesian tensorial index 
notation of continuum solid mechanics in small 
strains the field equations (so-called balance of -
physical- linear momentum) read in the absence of 
body force and for a volume element  
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∂
∂−∂

∂
ji

j
i xut σρ &  ,                                     (1)  

where 0ρ is the matter density at the reference 

configuration, iu denotes the three components of 

the displacement, iu& denotes the corresponding 

velocity, and jiσ stands for the symmetric Cauchy 
stress. Eq. (1) pertains to the displacement 
component iu . In contrast, the local balance of 
energy governs all degrees of freedom 
simultaneously and reads in the absence of external 
source of energy and of heat conduction 
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where W is the potential energy per unit volume. 
Eq. (2) in fact is a true conservation law for the 
considered thermo-mechanical physical system. It 
reflects its invariance under time translations. It is 
not the only conservation law as we should in 
parallel consider the invariance under spatial 
parametrization (material coordinates). The 
resulting equation is called the conservation of 
material (or pseudo-) momentum and generally 
reads [3] 
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where  
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Here jib is referred to as the Eshelby (material) 
stress,  W is the free energy density, and the “force” 
source term S

if   accounts for effects of true 
material inhomogeneities, thermal and anelastic 
effects, if any, all in the form of “forces of 
inhomogeneity” [3]. For a perfectly homogeneous 
(but possibly anisotropic) purely elastic body 

S
if vanishes identically and (3) becomes a strict 

(covariant) conservation law reflecting an 
invariance under translation of material coordinates. 
This case follows from the application of Noether’ 
theorem relating to the invariance under material 
space parametrization. Otherwise, Eq. (3) is 
deduced from the standard equations (1) through 
manipulations.   
  
     If Eq. (1) are traditionally used to solve static 
and dynamic (wave) problems  on account of 
prescribed boundary and initial conditions, the 
additional equation (3) must be exploited in a 

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

648



second step, such as in a post-processing procedure. 
In the present setting we propose to exploit Eq. (3) 
with a view to associating a quasi-particle vision to 
linear wave processes of a certain type (e.g., 
acoustic surface waves propagating on the top of a 
substrate once the analytical wavelike solutions is 
known).  In particular, an interesting quantity here 
is the so-called quasi-particle (wave) momentum 
obtained by evaluating the average of iP over a 
volume element most representative of the studied 
wave process, i.e., symbolically  
 

i
QP

i PP =  .                                                         (5) 

 
Then Eq. (3) will yield the “equation of motion” of 
the associated quasi-particle by integration over this 
volume. The same procedure is applied to the 
energy equation. The effective “mass” of the quasi-
particle is evaluated in the procedure 
 
3  SH and  Bleustein-Gulyaev (BG) 
waves 
 
3.1 Reminder   
 
     The case of Rayleigh SAWs was studied in Ref. 
[2] together with various types of perturbations. 
Shear-horizontal (SH) SAWs are in principle much 
simpler than Rayleigh SAWS because they involve 
only one displacement component 3u orthogonal to 

the sagittal plane SΠ of coordinates ( )21, xx , but 
they exist only in specific conditions usually related 
to a perturbation of some kind of the boundary 
conditions at the surface of the substrate (see, e.g., 
[6]). Such conditions are for instance obtained by 
coupling with electric properties in piezoelectric 
materials of 6mm symmetry axis orthogonal to 

SΠ . These SAWs were discovered by Bleustein 
and Gulyaev in 1968. Their associated quasi-
particles [1] and their perturbations are particularly 
easy to study in the present framework although 
coupling with quasi-electrostatics for dielectrics is 
necessary.   
     
The standard solution of the BG surface wave is 
now well known via the introduction of an effective 
electric potential that accounts for the 
electromechanical coupling (cf. [7], Chapter 4). The 
corresponding point thermo-mechanics of the 
associated quasi-particle is obtained in the 
following Newtonian-Leibnizian form [1]: 
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corresponding to the “dispersion” relation 
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In these equations, 44c , 15e and 11011 χεε += are 
the only surviving elastic, piezoelectric and 
dielectric material coefficients for the 6mm 
symmetry. The results (6)-(7) are particularly 
simple with a momentum BGP in the  

1x propagation direction, a mass BGM  that is 
naturally quadratic in the wave amplitude, and a 
quasi-particle kinetic energy BGK that appears 

purely kinetic (via the mass BGM ) although 
originating in the continuum framework from 
kinetic, elastic, piezoelectric and electrostatic 
energies altogether. The BG solution (wavelike or 
particle-like) does not exist when the 
electromechanical coupling factor K vanishes. 
 
3.2 Bleustein-Gulyaev SAWs  perturbed by a 
weak elastic nonlinearity 
 
     The case where the volume energy of the above 
linear case is augmented by a small quartic elastic 
term to be treated further as a perturbation was 
recently treated in Ref.[8]. The physical system 
becomes a generator of third harmonic. In the 
treatment of the associated quasi-particle, the 
relevant representative domain of integration of the 
conservation equation is given by 

]1,0[),0[],0[ ×+∞×=Ω Sλ ,                        (10) 

where SS k/2πλ = is the wavelength of the first 
harmonic component as altered by the nonlinearity.  
It is obtained that both the mass and the kinetic 
energy of the quasi-particle are increased compared 
to those of the linear case.  
 

3.3 Bleustein-Gulyaev SAWs  perturbed by a 
weak viscosity of the elastic substrate  
 
    This case is treated in detail in Ref. [9] to which 
the reader is referred. Both equations (2) and (3) 
acquire source terms in their right-hand sides. The 
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wavelike solution perturbed  by an added small 
viscosity of the substrate is given in Ref.[10]. The 
quasi-particle motion becomes non-inertial with a 
source term due to friction. Simultaneously, the 
associated kinetic energy is no longer conserved. 
This case is distinctly remarkable in that the “mass” 
becomes a function of time and the associated 
quasi-particle momentum is no longer strictly 
parallel to the plane boundary: at orderε , the 
motion of our quasi-particle has become two-
dimensional in the sagittal place.  
 

3.4 Murdoch SAWs 
 
    Another model that involves a unique SH 
displacement is the one introduced by Murdoch 
[11]. This model is particularly interesting because 
(i) of its purely mechanical nature, and (ii) of its 
relative simplicity with a dispersive monomode of 
propagation only (thus much simpler than the 
dispersive multimode Love SAWs). The basic field 
equations are 
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Region 02<x is considered a vacuum. Here 
superimposed carets refer to quantities related to 
the surface of unit outward oriented normal jn . 

Thus jiσ̂  is a surface stress while 
++ →= 0,lim 2xjiji σσ is the three-dimensional 

stress from the body. Mass density 0ρ̂ is per unit 
surface, so that the limiting surface is endowed both 
with inertia and elasticity; it is a “material” surface.  
System (11)-(12) admits a pure SH SAW solution. 
We note  
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The resulting SH SAW solution 3u of (11)-(12) has 
a (true) dispersion relation given by 
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and the solution exists only for phase velocities c 
such that  TMT cccc <=<ˆ . 
       It is shown that the canonical conservation laws 
of wave momentum and energy are obtained by 
combining those associated with the surface motion 
at 02=x with the volume ones integrated over the 

depth in the substrate. The final result is a quasi-
particle with Newtonian-Leibnizian properties, i.e,  
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with mass given by  
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Here, α  is the attenuation coefficient in depth such 
that  

aT k
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hence also a function of the wavelength. This 
provides an original example of quasi-particle 
associated with a dispersive SAW. 
 
4  Transmission-reflection problem  
 
4.1 Perfect interface between two solids 
 
    For the sake of simplicity we discard the 
attenuation in depth of the wave and thus consider a 
propagating SH face wave. Propagation from left 
(medium 1) to right (medium 2) is described by the 
equations of 1D linear elasticity in media 1 and 2 
(respectively, with displacements u1 and u2 ) with 
matching conditions  

0, ,22,1121 === xatuuuu xx μμ .                      (18) 
 
and general solution in media 1 and 2 

TRI uuuuu =+= 21 ,                                           (19) 
with 
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                                                                           (20) 
where subscripts I, R and T refer to the incident, 
reflected and transmitted signals, respectively. The 
conservation of energy flux stands in the well 
known form 
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where R0 and T0 are the reflection and transmission  
coefficients such that  
( 2,1, == αρ ααα cz , are impedances) 
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In the associated quasi-particle picture the local 
conservation laws of wave momentum and energy 
read in each medium 
 

0,0 =∂
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where the energy or Hamiltonian per unit volume 
H, the energy flux Q, the wave momentum P and 
the (here reduced to a scalar) Eshelby stress b are 
defined by  
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     With the perfect interface at 0=x , we can 
associate one quasi-particle with each wave 
component of the problem. With an obvious 
notation we have the following “masses”: 
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The corresponding averaged wave momenta are 
given by 
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where we account for the fact that the averaged 
wave momentum RP  is oriented towards negative 

x’s. We note MΔ , PΔ , and HΔ the possible 
misfits in mass, momentum and kinetic quasi-
particle kinetic energy defined by   
 

( ) ITR MMMM −+=Δ : ,                            (29)        

( ) ITR PPPP −+=Δ                                  (30)    

( ) ITR HHHH −+=Δ                                (31)     

where the symbolism ...  refers to the absolute 
value of its enclosure. That is, we are comparing 
the strengths of the momenta. We say that a 
quantity is conserved during the transmission-
reflection problem if the corresponding misfit 
vanishes. It is shown that  
           

( ) 0
2
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1 FUzH ωπ=Δ ,                                       (32) 

where 0F has been defined in (21). But the latter 

vanishes. Accordingly, 0≡ΔH : kinetic energy is 

conserved in the transmission-reflection problem 
seen as a quasi-particle process that may be 
qualified of Leibnizian (conservation of vis-viva). 
But “mass” and momentum are not generally 
conserved in the present problem as it is 
immediately shown that  
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so that PΔ  and MΔ always are in the same sign. 
In particular, 0>ΔM  if 21 cc > and 0<ΔM if 

21 cc < ;  0=ΔM  if and only of 21 cc = , 
 
4.2 Imperfect interface with possible delami- 
nation 
 
     In the case of an imperfect interface with 
possible delamination where the matching 
conditions (18) are replaced by the conditions 
(known as Jones’ conditions [12]) 
 

[ ]uK≡= 21 σσ ,                                                  (35) 
 
where K is a positive (spring) coefficient 
characterizing the degree of delamination and the 
symbol [ ]..  means the jump of its enclosure, i.e., 

[ ] 12 uuu −= at 0=x . We must look for complex 

solutions of the type ( )( )tkxiAu ω−= exp . 
Conditions (35) yield the following equation that 
replaces (21) – now R  and T  are the moduli of 
complex reflection and transmission coefficients: 
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It is shown that  
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The solution of this imperfect interface case is 
characterized by the parameter ω/K which shows 
the role played by the frequencyω . The limit case 

∞→K  corresponds to the perfect interface for 
which (21) holds true. The limit case 

0→K corresponds to full delamination (no more 
transmission and complete reflection: 0=T  , 

1=R ).  
        In the associated quasi-particle picture, there 
is no need to redo the computations. It suffices to 
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replace the transmission and reflection coefficients 
of the perfect case by the moduli of the new 
complex coefficients. Thus (32) is replaced by 
 

( ) KFUzH 2
12

1 ωπ=Δ .                                      (38) 

But this also vanishes by virtue of (36). Similarly, 

(33) holds with 2
0T replaced by 

2T while (34) 

remains unchanged, noting that the coefficient 
( )2121 / cccc +  does not depend on K. In the case 

when 0≠K but media 2 and 1 are identical, the 
presence of the K spring distribution can simulate a 
homogeneous surface of damage. In this case, both 

MΔ and PΔ vanish so that K is no longer 
involved. The dependence on K shows only through 
the value of any of RM , TM , RP and TP .  
 
4.3  Case of a sandwiched slab  
 
     In the case where an elastic slab (medium 2) of 
thickness d is sandwiched between two media of 
elastic type 1, the propagation considered is  from 
left to right with reflection coefficient R in the left 
medium 1 and transmission coefficient T in the 
right medium 1. We assume that 2λ>>d   , where 

2λ  is the (elastic wave) characteristic wavelength 
of medium 2, so that the association of quasi-
particle properties  makes  sense in the slab. We 
need not reconsider the wavelike solution. It 
suffices to apply the results of the foregoing 
paragraphs to the two interfaces at 0=x  
(transition 21→ ) and at dx=  (transition 12→ ). 
Results are not reproduced here for lack of space.  
 
In the case where we reduce the thickness d to zero 
while keeping the ratio d/2μ  finite the studied 
case reduces to the imperfect case of the previous 
paragraph with the surface elasticity coefficient 

dK /2μ= .  
 
4.4   Case of a sandwiched multi-layer structure 
 
     With a careful bookkeeping, the formalism and 
“algebra” just introduced can be applied  to the 
more complicated case where the sandwiched slab 
is made of a number 1−n of perfectly elastic layers 
(each with its own elastic properties) numbered 

ni ,..,2= , all in perfect contact.  
 
5   Concluding remark 
 
    The wealth of treated cases shows that the 
association of the waves of interest with the notion 
of quasi-particle is not a conceptually difficult 

matter but it is limited by the analytical difficulties 
met in solving the wavelike continuum problem.     
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