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In this paper we propose a Finite Differences scheme for the simulation of the propagation of the acoustic
field, i.e. the three components of the velocity and the pressure. The scheme has been tested in simple
1D, 2D and 3D closed environments. We study in detail the computational resources needed for real-time
rendering showing that the proposed integration scheme canbe used in future multimedia applications.

1 Introduction

In the last decade, the new emerging multimedia tech-
nologies have forced new developments in modeling the
propagation of sound waves in 3D virtual environments
[1]. Historically, the first applications were in the context
of the modeling of concert halls for prediction and aural-
ization of sound [2, 3]. In the recent years new research
interests have appeared driven by multimedia technolog-
ical advances. Among the plethora of new applications
we have to mention those derived from the entertain-
ment industry (cinema, video games, ...); those related
with music (music processing, composition and synthe-
sis); those related with virtual environments and Virtual
Reality (VR).

There are many techniques to model acoustic environ-
ments and the suitability of them depend strongly on the
particular application [1]. In this paper we focus our at-
tention in the possibility of real-time sound rendering for
multimedia production. In particular, we propose a Fi-
nite Differences algorithm for the acoustic rendering in
cubic rooms [4] focusing on the possibility of real-time
implementation.

The paper is organized as follows: in Section 2 we define
on physical grounds the acoustic problem; in Section 3
we propose an algorithm for the numerical solution of the
problem; in Section 4 we make a detailed analysis of the
results in one dimension while in Section 5 we show the
results in two and three dimensions and finally in Section
6 we present the conclusions and the outlook of our work.

2 Statement of the Problem

Sound waves have some particularities; one of these is
that they differ from waves on a string or on a mem-
brane by being longitudinal waves. The molecules of the
air move in the direction of propagation of the wave, so
that there are no alternate crests and troughs (transversal
waves), as with waves on the surface of water, but alter-
nate compressions and rarefactions. The restoring force
responsible for keeping the wave going is simply the op-
position that the fluid exhibits against being compressed

[5]. The presence of a sound wave produces changes
in density, pressure, and temperature in the fluid, each
change being proportional to the amplitude of the wave.
The pressure changes are usually the most easily mea-
surable, though nowadays some sound detectors measure
directly the velocity components of the air [6].

From now on, we consider the elastic case: sound waves
propagate through space without loss of energy (i.e. no
dissipation). The energy is only lost at the walls (bound-
ary conditions). Then, we have to consider the classical
linear equations for the acoustic field which can be writ-
ten as [5],
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Whereρ is the density of the fluid (from now on, the air)
andc is the acoustic velocity inside this fluid. The veloc-
ity of the fluid is given by~u = (ux, uy, uz) andP is the
pressure relative to a given pressure reference level (usu-
ally the atmospheric pressure). The first three equations
state that a pressure gradient produces an acceleration of
the fluid while the fourth states that a velocity divergence
produces a compression of the fluid. These equations are
valid for small velocities and small values of the relative
pressure.

We have to remark that, in order to have a complete phys-
ical description of the acoustic field, it is very important
to know the acoustic velocity as well as the acoustic pres-
sure [6] and is for that reason that we work with equations
(1)-(4) and not only with the wave equation for the pres-
sure. Therefore, the numerical scheme we propose in the
next section deals with the complete set of linear equa-
tions (1)-(4).
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3 Finite-Differences approach

For the applications we are interested in, the acoustic
spaces we shall consider consist on simple cubic rooms.
There are a lot of methods for computing the acoustic
field in a closed space. In general, they can be divided in
two main groups: geometrical-based methods (GMs) and
physical-based methods (PMs).

GMs exploit the fact that the sound field can be decom-
posed in elementary waves (sound field decomposition).
As an example we have to mention the image source
method, ray-tracing methods and more recently, beam-
tracing methods [7]. These methods are very fast from
a computational point of view but they lack of accuracy
because a lot of approximations are taken in order to re-
produce important acoustic features such as diffraction.

On the other hand, PMs deal with the exact numerical so-
lution of the acoustic linear equations (1)-(4)1. These
methods are very accurate in reproducing the acoustic
field but are usually prohibitive from the computational
resources point of view. The most common techniques
used for the numerical approximation of the linear equa-
tions are Finite Differences (FD), Finite Elements (FE)
and Boundary Elements (BE) methods [8].

In this paper we propose a FD algorithm in the time do-
main (FDTD) for the solution of equations (1)-(4). We
have chosen FDTD methods by many reasons.

• FD algorithms give an accurate physical solution for
the acoustic field and reproduce diffraction phenom-
ena in a natural way.

• For animation and multimedia purposes, we have
to consider cases where both the sound source and
the receiver can move around. FD algorithms com-
pute the sound field in the whole space at each time;
therefore, the fact that the source or the receiver can
move does not increase the computational effort.

• FDTD methods are easy to parallelize and therefore
very suitable for future real-time applications.

Among all the FDTD algorithms that are in the litera-
ture we finally have chosen the MacCormack method [4]
which is a two-step second order explicit method. It is
well-known that in one dimension this method gives good
results in accuracy for the wave equation; moreover, it is
an algorithm that can be easily extended to higher dimen-
sions and to non-linear acoustic problems.

Consider that the space is discretized on a regular grid.
The nodes of the gridi at a timen are characterized by the
following four quantities: velocity~ui

n = (ux, uy, uz)n
i

1Generally, only the wave equation is considered. However, new
measurement devices justify the treatment of the complete set oflinear
equations.

and pressurePn
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are the stability con-
stants of our problem. The second and final step is:
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(ûz)n+1

i − (ûz)n+1
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This algorithm (5)-(12) is proposed as a numerical in-
tegration scheme of the linear equations of the acoustic
field (1)-(4). Such a scheme has never been analyzed in
full detail in this context.

In the next sections, we apply this scheme to very simple
geometries in one, two and three dimensions focusing on
the possibility of future real-time applications.

4 One-dimensional results

In this section we briefly review the main features of the
MacCormack algorithm in one dimension. Although the
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one dimensional case (one dimensional string) is not re-
alistic it is a natural first step for analyzing carefully the
features of the numerical algorithm.

As a simple test case, we have considered the propagation
of an initial pressure distribution in a line of20 meters.
The density of the air isρ = 1.21 Kg/m3 and the speed
of sound considered isc = 330 m/s. The initial field
velocity is zero and the initial pressure distribution is an
academic (non-realistic) function defined by,

P (x) = 100(x − 8) x ∈ [8, 10]

P (x) = 100(12 − x) x ∈ [10, 12] . (13)

As the initial velocity distribution is zero (the air is at
rest) the initial perturbation decomposes into two waves
of amplitude100 Pa travelling in both directions. In the
next sections we check the suitability of the numerical
approach to reproduce the wave propagation of the initial
pressure distribution (13) in different physical cases.

4.1 Boundary conditions

Let us consider the implementation of different boundary
conditions. In general, we can distinguish between three
different physical situations:

• Reflecting walls: In Figure 1 we show the evolu-
tion of the initial pressure distribution (13) with per-
fectly reflecting boundary conditions. The initial tri-
angular perturbation is decomposed into two travel-
ling waves which are reflected after hitting the cor-
responding wall (as can be seen in the snapshot cor-
responding tot = 0.04 s).

0 5 10 15 20
x (m)

0

50

100

150

200

P
re

ss
ur

e 
(P

a)

t = 0.001
t = 0.01
t = 0.02
t = 0.03
t = 0.04

Figure 1: Time evolution of the initial distribution (13),
the walls are perfectly reflecting. The wave after reflec-
tion is drawn in red.

• Anechoic Walls: This case corresponds to a per-
fectly absorbing boundary conditions. In Figure 2
we simulate the same initial pressure distribution as
before. At timet = 0.03 s the energy of the waves
has decreased (green line) because of the absorption

of the walls. At timet = 0.04 s the two waves have
disappeared.
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Figure 2: Plot of the evolution of the same initial pertur-
bation. The walls are perfectly absorbing.

• Partially absorbing walls: Now we can consider a
general wall with a given absorption coefficient. In
order to implement the absorption of the wall we
have defined a parameter0 ≤ ǫ ≤ 1 in such a way
that, ǫ = 0 for anechoic walls whileǫ = 1 for re-
flecting walls. In Figure 3 we can see that the left
wall absorbs part of the energy of the incident wave
in such a way that the amplitude of the reflecting
wave is much smaller. Note that the amplitude is
not reduced by a factor two, indicating that the pa-
rameter we have defined is not linear with respect to
the amplitude of the incoming wave. In more gen-
eral physical situations, the parameterǫ should be
frequency-dependent.
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Figure 3: The same plot as before. Now, the wall located
atx = 0 m has a coefficientǫ = 0.5 while the other wall
is perfectly reflecting.

In these simulations the parameters we have considered
are: ∆x = 0.02 m and∆t = 0.00001 s = 0.01 ms.
These values has been chosen in such a way that the so-
lution is numerically stable. In the next section we will
analyze with more detail the choice of the parameters.
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Until now, we have considered only the propagation of a
particular initial condition through space. The situation
considered is not very realistic because for real applica-
tions we have to consider the propagation of sound emit-
ted from a sound source rather than the propagation of an
initial pressure distributions.

4.2 Sources

Let us consider pure sound sources in the center of the 1D
room. The choice of∆x is of crucial importance depend-
ing of the pitch of the sound considered. The audible rang
of frequencies isν = 100− 1500 Hz which corresponds
to a wavelengthsλ ranging from about20 cm to few me-
ters. If we follow the criterion of 20 grid points per wave-
length, to cover all the range we have to choose∆x =
0.01 m. In Figure 4 we show a snapshot of the pressure
distribution at a timet = 0.01 s for a periodic sound
source located in the middle of the room. We show the
results for three frequencies:ν = 100, 1000, 1500 Hz.
In Figure 4, we have considered that the amplitude of the
periodic sound signal is2 Pa which corresponds roughly
to 100 dB of Sound Pressure Level.
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Figure 4: Three snapshots att = 0.01sec where
there is a source in the center at frequenciesν =
100, 1000, 1500 Hz.

In this simulation we have used the following parame-
ters:N = 1000, ∆x = 0.01 m and∆t = 0.00002 s. As
can be seen in Figure 4 the results are very accurate with
these parameters. Therefore, in our numerical approach
we need to perform105/2 updatings for each second of
the actual sound propagation. We also need 16 floating
operations for updating one grid point and we have 1000
grid points. Therefore, for real-time rendering, the num-
ber of floating operations per second (FLOPS) has to be
at least,

N1D
op = 0.8 GFLOP,

which is in the range of the usual desktop computers ca-
pabilities.

4.3 Speaker/Receiver Problem

Let us consider a more realistic situation in which a
Speaker S is located atx = 2.5 m of the one-dimensional
room of ten meters and a Receiver R is located as an ex-
ample, inx = 7.5 m. In Figure 5 the speaker produces
a sound which is the product of three sinusoids (black
curve) and after a while, the receiver listens the audio sig-
nal (red curve) without any interference pattern (anechoic
walls).
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Figure 5: Sound signal pressure as a function of time for
the speaker located atx = 2.5 m (black line) and for the
receiver located atx = 7.5 m (red line).

The extension to more complex situations is straightfor-
ward. We only show this very simple case in order to
illustrate how the algorithm works.

5 2D and 3D results.

In two dimensions the situation is pretty similar but we
have to consider more grid points. As a first example, we
consider a punctual sound source located at the middle of
a two dimensional room. The room is2 × 2 square me-
ters. The parameters we have chosen are the same as the
ones used in the one-dimensional case in order to ensure
accurate results. Note that these parameters are such that
the Courant numberC = c∆t/∆x verifiesC < 1/

√
2

ensuring the stability of the solution in 2D [9].

In Figure 6 we show the propagation of three waves emit-
ted with frequencyν = 1000 Hz. The algorithm repro-
duces exactly the wave propagation in both directionsx
andy. In two dimensions, the number of operations per
grid point is 28 and the number of grid points is 40000.
Therefore, for real-time applications, the velocity of the
processor should be at least,

N2D
op = 56 GFLOP,

which is of the order (but higher) of the power of common
desktop computers.
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Figure 6: Six snapshots of the wave propagation of three waves emitted with frequencyν = 1000 Hz. The walls are
partially reflectingǫ = 0.5. We can see how the symmetry of the propagating field changes after the collision with the
walls.
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In 3D we can implement the algorithm with the same
quality results obtained in lower dimensions. In this
case, the number of floating operations for a room of size
2 × 2 × 2 is given by:

N3D
op = 16 TFLOP.

Note that this velocity is far away from the capabilities
of desktop computers and can be only treated in real-time
by supercomputers. If we want a real-time computation
in 3D using a few processors, the number of grid points
that can be processed in real-time with this algorithm is
maybe of the order of104.

6 Conclusions

In this paper we have proposed and studied a FD ex-
plicit algorithm for computing the time propagation of
the acoustic field. We have solved the four convective-
like equations of the acoustic field (1)-(4) in one, two and
three dimensions for a cubic rooms.

In order to test the possible applications of the algorithm
we have computed the number of FLOPS needed for real-
time implementation of the algorithm with high quality
results. Therefore, we found an upper bound of the num-
ber of operations needed for rendering the acoustic field
in simple rooms. The results can be summarized as:

N1D
op ≃ 1 GFLOP

N2D
op ≃ 100 GFLOP

N3D
op ≃ 10000 GFLOP.

In one dimension, the computations can be performed by
a common desktop computer. For two dimensions we are
in the limit of the capabilities of the desktop computers.
Nevertheless, the algorithm we have used can be paral-
lelized very easily and with a few processors working in
parallel the acoustic field can be reproduced in real-time
with high accuracy. This results will be published else-
where.

In three dimensions the situation is more puzzling be-
cause the velocity of the processor we need for good re-
sults is of the order of TERAFLOPS. Nowadays, only
supercomputers can work at this velocity.

Therefore, for 1D or 2D applications in real-time the al-
gorithm studied is suitable in terms of accuracy and com-
putational resources, but for 3D the applicability is re-
stricted to non real-time applications. One of such appli-
cations we are working on is in the field of digital cin-
ema where the acoustic field can be rendered for differ-
ent scenes (i.e, different boundary conditions). Unfortu-
nately, most of multimedia applications require 3D real-
time rendering sound.

We have to stress that we have found upper bounds for
the high quality rendering of acoustic fields. For real-
time 3D applications, the upper bound found is beyond
the capabilities of common processors and we have to
try to reduce the number of FLOPS in the rendering pro-
cess by introducing further approximations. One way of
doing it is to combine an FDTD algorithm for low fre-
quencies with other geometrical-based methods (GMs)
for high frequencies (such as the image sources method).
The fact of using GMs will introduce some inaccuracies
to the acoustic field perceived by humans which for high
enough frequencies should be small [10].
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