The goal of prediction, in Room Acoustics, is to synthesize the impulse responses (IRs) of a hall, in order
to derive acoustic indices or to allow auralization. The process assumes the hall to be a time invariant
linear system. Furthermore, the IR is known to behave stochastically when the sound field becomes
diffuse, that is, after a certain time called mixing time. This study aims at characterizing the IR mixing
time. Three methods are presented for visualizing and detecting the time evolution of the IR behaviour.
The first one highlights the transition from early reflections to diffuse sound field by monitoring the
phase evolution versus time. The two others exploit the gaussian distribution of pressure in a diffuse
sound field, when the IR becomes statistical. These methods are applied to measurements, carried out
in Salle Pleyel, and confirm the simple relationship found earlier between mixing time and volume.

1 Introduction

In room acoustics, impulse responses (IRs) are com-
posed of the direct sound, arrivals (an arrival is a sound
ray which reaches the listener ears after having under-
gone one or more reflections on the boundaries of the
room), and the diffuse sound field, more often called
the late reverberation (Fig.1). The arrivals, commonly
named early reflections, are a set of discrete events. IRs
can be synthesized using different sets of techniques,
such as image-sources [1], sound rays [2], etc. Know-
ing the geometry of the room and the distance source-
receiver, the direct sound and early reflections can easily
be synthesized. The diffuse sound field is assumed to be
a gaussian process [3], and is synthesized as such [4].
The transition from early reflections to late reverbera-
tion, that occurs after a certain time called the mixing
time, is supposed to be related to the volume of the con-
sidered hall [5].

In order to investigate the previous relationship, this pa-
per proposes three methods for estimating the mixing
time of experimental IRs, with knowledge of the vol-
ume of the hall. After reviewing statistical properties
of room acoustics in Section 2, Section 3 introduces an
original way of visualizing the phaseshift evolution of
the signal vs. time. Then, Section 4 presents two sim-
ple estimators of the mixing time based on the statis-
tical properties of the diffuse sound field. In Section 5,
the phaseshift evolution and the gaussianity estimators
are used to estimate the mixing time of 21 experimental
room impulse responses, measured in Salle Pleyel [6],
with pistol shots as sound sources. A comparison be-
tween the three methods is carried out with focus on
the spreading of the results. Further, the statistical rel-
evance of each method is discussed. Finally, this paper
conludes with a link bewteen the mixing time and the
mean free path [5].

2 Some statistical properties of
room acoutics

According to [3] and [7], the modal density (D,, -average
number of modes per Hz) of an IR is proportionnal to
the square of frequency f, while the echo density (D, -
average number of reflections per second) is proportional
to the square of time ¢, such as:
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Figure 1: Experimental IR. Note that the transition
from the early reflections (noted ER on the graph) to
the diffuse sound field (noted DSF on the graph) is
not well-defined.

where cg is the speed of sound in m.s™!, and V is the
volume of the room in m?.

These expressions (Eq.(1)-(2)) can easily be demon-
strated for simple shape rooms (rectangular for instance),
but only Eq.(1) can be generalized to rooms of any ge-
ometry [8]. For larger times and higher frequencies, both
densities become large. This provides the foundation of
statistical models of room responses, as developped in
the frequency domain [9], and more recently in the time
domain [3]. The resulting time-frequency model is valid
for the later reverberation decay at frequencies above
the ”Schroeder frequency”, and is essential basis for ar-
tificial reverberation techniques [10] [11]. Equation (1)
implies that, at high frequencies, the normal modes of
a room overlap in the frequency domain, i.e. the av-
erage separation between normal frequencies is smaller
than the bandwith Af of a mode. Thus, at high fre-
quencies, any source signal will simultaneously excite
several modes. The complex frequency response can be
considered as a space frequency dependent stochastic
process whose real and imaginary parts are some inde-
pendent gaussian processes having the same variance [7]
[9] [12] [13]. These properties are valid irrespective of
the listener position and of the room (above a limit fre-
quency - ”Schroeder frequency” [14]- which depends on
the room). In the time domain too, there is also a time
(the mixing time) after which the stochastic model be-
comes valid [15]. The time domain response can only be
gaussian if a sufficient number of reflections overlap at
any time along the response. Since the reflection density
increases with time, according to Eq.(2), the situation is
similar to that found in the frequency domain. Except
that the ”width” of a reflection in the time domain can-
not be defined solely with respect to the intrinsic proper-
ties of the room (unlike bandwidth of modes), but with



reference to the bandwidth of the source, which deter-
mines the spreading of the source.

Polack [3] proposes as a criterium that 10 reflections
overlap within a characteristic time resolution of the au-
ditory system, taken equal to 24ms [7]. Then Eq. (2)
leads to:

where tpizing i the mixing time, expressed in ms, and
V is the volume of the room in m3.

This value was proposed as a reasonnable approxi-
mation for the transition time between early reflections
and late reverberation. It is shown in [3] and [16] that
the exponentially decaying stochastic model can be es-
tablished within the framework of geometrical acoustics
and billiard theory [17] [18]. The mixing time is defined
as the time it takes for initially adjacent sound rays to
spread uniformly across the room. By that time (the
origin is taken as the time of emission of the impulse
by the source), the process has become diffuse, i.e. the
acoustical energy density and the direction of the in-
tensity are uniformly distributed across the room. The
mixing character of a room depends on its geometry and
on the diffusing properties of the boundaries or the hall.
Consequently, the value /V can be considered as an up-
per limit for the mixing time in mixing rooms, as it has
been discussed in [16] [19].

In the following, three different methods are used
to estimate the mixing time in experimental IRs, and
compared to the theoretical value given by Eq.(3).

3 Phaseshift time evolution

3.1 The eXtensive Fourier Transform:
XFT

When the source emits in the room, sound rays travel
into the air and hit walls once or several times before
reaching the ears of the listener. Each time a sound ray
hits a surface, it is reflected according to the intrinsic
properties of the materials. A part of the incident en-
ergy is reflected specularly, another is absorbed and the
last part is scattered in the space. Depending on the
geometrical configuration of the surfaces (diffusers) and
on the properties of the materials, sound rays are fil-
tered out (in modulus and in phase) so that phaseshifts
and scattering are assumed to be an increasing function
of time [7]. Hence, the phase of the IR is expected to
behave more and more randomly as time goes by, until
being definitely random after the mixing time.

The authors propose an original approach for discrim-
inating this phenomenum. Basically, it is a Fourier
Transform on an extensible window of variable width,
instead of a sliding window of fixed width, as in the
Short Time Fourier Transform (STFT). The idea is
to document the evolution of the system at each time
step, according to the past of the signal, by conserv-
ing the time origin, instead of using a snapshot as in
the STFEFT. This new transformation is called X F'T, as
eXtensive Fourier Transform, and is defined by:

wN—1
Y(w,v) = Z y(n).e 2™ (4)
n=0
where y(n) is the signal to analyze (of N samples length),
and w is a hop size window.

One could interpret the X F'T as a kind of cumulative
integration of y(n) in time and in frequency domains. At
each time step, the X F'T is calculated for the same to-
tal number of samples (using zero padding), in order to
keep the same frequency resolution for each time win-
dow. Obviously, the smaller the hop size window w, the
higher the time resolution, but the longer the computa-
tional time is.

3.2 Visualization of the phaseshift

Figure 2 shows several graphs of the unwrapped phases
of the X F'T, according to Eq.(4), at several time steps.
As expected from Section 3.1 and [7], the phase wraps
faster between 7 as time progresses, denoting the in-
creasing randomness of the signal. Moreover, while the
unwrapped phase of the first milliseconds (and especially
of the direct sound) is a linear function of frequency, the
phase of late reverberation becomes rugged. This grad-
ually change of behaviour is assumed to be an efficient
way to visualize the randomness of the signal, and thus
to estimate the mixing time. This is achieved by cal-
culating, at each time step, the mean regression error,
called D(t)), between a linear regression made on the un-
wrapped phase and the unwrapped phase itself (Fig.3).
D(t) increases with time, showing abrupt changes of be-
haviour, materialized by several inflexion points. The
mixing time is choosen as the first inflexion point. It
is noticeable that D(t) equals zero for the direct sound,
and increases between reflections, underlying a diffusion
process occuring at each reflection. Further, D(t) de-
creases for each arrival, since in the early part of the
IR, arrivals are still correlated with the direct sound.
Figure 3 (bottom) presents a scattering effect of 35ms
approximately, caused by a balcony. During this time,
the diffusion makes the phase behaviouring randomly.

4 Gaussianity estimators

The transition from early reflections to late reverber-
ation occurs gradually, as mentionned in Section 2, so
that the temporal distribution of the signal tends to-
ward a gaussian distribution. The following two sections
present two frequently used statistic tools (cumulants,
also used in [20]), that help defining a gaussian distribu-
tion: the standard deviation and the kurtosis. Higher
order cumulants contain amplitude and phase informa-
tion, unlike second order statistics (such as correlation),
which are phase blind [21]. Further, cumulants of order
greater than two measure the non-gaussian nature of a
time series.

4.1 Standard deviation

The standard deviation (o, second order cumulant) of
a group of samples is a measure of the spread of the
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Figure 2: Unwrapped phase of the X F'T calculated, for
several time steps (right), on an experimental IR (left).

samples around the average, and is defined as:
o= E(x?) - E*(x) (5)

where E(z) is the expected value of .

In a normal and centered distribution, two third of
the samples lie between [—o;+0], while a third of the
samples lie between | — 0o; —o[ and ]o; +00[. The mix-
ing time is estimated as the time when the ratio R(n),
defined in Eq.(6), reaches 2.

N—-1

ZO N:c(nh) [_

n=

Nw(nh) [_U; 0]
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R(n.h) = (6)

where N, (,.n)(a;b) is the number of samples of x(n.h)
within @ and b, and h is a hop size window.

In order to make a figure readable, the ratio R(n) is
normalized according to:

~ R(n.h) —2

B(n) = maz(R(n.h)) @

As seen in Fig.4, which presents the values taken
by R(n) computed on an experimental IR, early reflec-
tions present extreme values (R(n) > 0), while the pro-
gression of the signal toward a gaussian distribution is
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Figure 3: Estimation of the mixing time with the
unwrapped phase on an experimental IR. Note that
curves are normalized for an accurate readability. Top:
the IR begins with the direct sound. Bottom: the IR
begins with a scattering effect during the first 35ms
(the diffusion is noticeable). Plots (b) and (d) are
details of plots (a) and (c).

obvious around 100ms, since R(n) = 0. The hop size
window (h) is taken equal to 24ms, since it is the time
integration of the human ear [3].

4.2 Kurtosis

The fourth order zero lag cumulant of a process is called
kurtosis. It is defined as (with normalization):

E(x —p)?

k= =

-3 (8)
where E, o and o are the expected value, the mean and
the standard deviation of x, respectively.

For a gaussian distribution, ¥ = 0. Figure 4 also
shows the values of k of calculated on an experimental
IR, using a hop size window of 24ms width. As no-
ticed previously, early reflections are easily recognizable,
while the mixing regime is achieved when k£ = 0.

Both cumulants show that the IR evolves gradually
from a less diffuse regime toward a more diffuse state of
the system (Fig.4).

5 Mixing time estimation

The mixing times are estimated over 21 IRs measured in
Salle Pleyel (V = 19000m3), with pistol shots as sound
sources [6]. The time elapsed between the emission of
the impulse by the source and the reception at the mea-
suring point is added to the estimated times. Results
are presented in Table 1.
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Figure 4: Estimation of the mixing time using the
standard deviation and the kurtosis methods on an
experimental IR.

The theoretical value of the mixing time (accord-
ing to Eq.(3)) for the Salle Pleyel is 137ms, which is in
agreement with the results found by the three methods.
Differences of variations between methods should be no-
ticed. The estimation of the mixing time by computing
the phase of the X F'T" provides the smallest variations.
Moreover, the results confirm on the one hand that the
mixing time is linked to the volume of the hall, and on
the other hand, that its theoretical value is an upper
limit.

6 Discussion

Attention must be paid to the drawback of using the
standard deviation and the kurtosis as gaussianity esti-
mators, because they both constitute necessary but not
sufficient conditions to characterize a normal distribu-
tion. Moreover, as mentionned in [20], the identification
of the mixing time becomes difficult for different rooms
using standard deviation and kurtosis, since the values
R(n) and k are not constant along the curve. For in-
stance, R(n) and k equal zero in presence of diffusion
between arrivals, even if it is not the mixing time. Fur-
ther, the high sensitivity to the window width of analy-
sis (h) of these two cumulants (Fig.5) makes these tools
hardly reliable. On the other hand, the X F'T" does not
suffer from the same limitation, as explained in Section
3.
One may notice that differences between the kurtosis
and the X FT methods are smaller than between the
XFT and the standard deviation methods, since the
kurtosis is a local measure of the phase of the signal.
Sabine [7] defined the mean free path as the average
distance covered by a sound ray between subsequent re-
flections. Blesser [5] assumes that the mixing time is
approximately equals to three times the mean free path
(< Lm >), which is given by:

< Lm >= %(m) (9)

where V' is the volume and S is the total surface of the
hall.

In Salle Pleyel, we estimate: S = 4530m?, V =
19000m? and the mixing time Tm = 130ms. From
Eq.(9), we obtain: < Lm >= 17.3m. And the ratio

Distances | Ty, (@) | T, (0) | T (K)
(m) (ms) | (ms) | (ms)
8.13 117 101 96
12.71 132 71 92
14.53 145 126 182
14.87 165 151 197
15.05 105 152 85
15.83 201 92 116
16.67 85 84 145
17.04 157 140 115
19.90 160 98 98
19.99 141 259 150
21.25 170 153 184
22.59 89 112 82
23.16 175 233 245
26.22 94 136 116
26.73 64 120 91
27.88 124 148 90
29.79 139 139 130
31.36 155 162 170
33.29 67 61 95
34.65 158 222 160
37.89 105 122 107

Average(ms) 131 140 130
a(%) 28 38 34

Table 1: Estimated mixing times, where Ty, (®), Tpn
(0) and T}, (k) are the mixing times estimated
respectively by the phase of the X FT (w = 5ms), the
standard deviation and the kurtosis methods
(h = 24ms).

between the mixing time and the mean free path is:
Tm

— =27
<Lm>/Co

where ¢g is the sound velocity. This confirms Blesser’s
assumption.

7 Conclusion

Impulse response synthesis is based on theroretical con-
siderations, such as the time at which the system be-
comes stochastical. This paper proposes three meth-
ods for estimating the mixing time of room impulse re-
sponses. First, an original tool is introduced (XFT),
which allows for the visualization and the computation
of the Fourier Transform of the transient signal step by
step, while keeping fixed time origin and time length.
Cumulants such as the standard deviation and the kur-
tosis are not as relevant since results have a strong de-
pendence on the window width of analysis.

This study permits to confirm the simple relationship
that links the mixing time to the volume of a hall. Fur-
thermore, it is also shown that diffuse reflections ran-
domize the phase of the signal so that it gradually in-
creases with time.

Further investigations should be made on other concert
halls in order to test the robustness of the X F'T', as well
as to test if the X F'T is perceptually relevant, and if



0.45

I
n

0.35

o
@

0.25

o
iy

0.15

Estimated mixing time (s)

E
o
s

0.05

I I |
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Hop size window (s)

Figure 5: Estimation of the mixing times using

different sizes of the window analysis, h.
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