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The Wave Based Method (WBM) is an alternative deterministic prediction method for steady-state
acoustic problems, which is based on an indirect Trefftz approach. It uses wave functions, which are exact
solutions of the underlying differential equation, to describe the dynamic field variables. As a result,
the WBM does not require a dense element discretization, as opposed to the commonly used element
based prediction techniques. The relatively smaller system and the absence of pollution errors make the
WBM very suitable for the treatment of mid-frequency problems, where the element-based methods are
no longer feasible due to the large computational cost associated with the fine discretizations needed to
retain accurate results.
This paper introduces a new modelling concept for the efficient treatment of radiation and scattering
problems when multiple distinct objects are involved. Each object is assigned to a separate level, where
it is treated using existing wave based modelling techniques. An adapted weighted residual formulation
links the multiple levels, yielding a multi-level wave based model describing the entire problem.

1 Introduction

Underwater acoustics, utilizing SONAR technology, is
by far the most commonly used technique for detec-
tion, assessment, and monitoring of underwater physical
and biological characteristics and objects which may be
floating in the water, lying on the seafloor, or buried be-
low the sediment. In some applications, such as low fre-
quency detection and classification of structurally com-
plex objects immersed in a fluid, signal processing tech-
niques must be aided by a-priori model based knowl-
edge of the target echo. Because objects of interest in
practical applications often consist of a configuration of
multiple geometrically complex objects with a detailed
internal structure, mathematical techniques capable of
dealing with generic geometries, and capable of coupling
different physical domains (i.e. the solid and the fluid
domains) must be used. Moreover, since the frequency
range of interest is very wide, the development of ef-
ficient numerical modelling techniques for the study of
underwater scattering in the frequency domain are of
great interest.

Both the Finite Element Method (FEM) and the Bound-
ary Element Method (BEM) are well established deter-
ministic CAE tools which are commonly used for the
analysis of real-life structural-acoustic problems. The
FEM (1) discretizes the entire problem domain into a
large but finite number of small elements. Within these
elements, the dynamic response variables are described
in terms of simple, polynomial shape functions. Be-
cause the FEM is based on a discretization of the prob-
lem domain into small elements, it cannot inherently
handle unbounded problems. An artificial boundary
is needed to truncate the unbounded problem into a
bounded problem. Special techniques are then required
to reduce spurious reflection of waves at the truncation
boundary. Three strategies are applied to this end: ab-
sorbing boundary conditions, infinite elements or ab-
sorbing layers (2). The BEM (3) is based on a boundary
integral formulation of the problem. As a result, only
the boundary of the considered domain has to be dis-
cretized. Within the applied boundary elements, some
acoustic boundary variables are expressed in terms of
simple, polynomial shape functions, similar to the FEM.
Since the boundary integral formulation inherently sat-
isfies the Sommerfeld radiation condition, the BEM is
particulary suited for the treatment of problems in un-
bounded domains.

However, since the simple shape functions used in both

the FEM and BEM are no exact solutions of the govern-
ing differential equations, a very fine discretization is re-
quired to suppress the associated pollution error (4) and
to obtain reasonable prediction accuracy. The resulting
large numerical models limit the practical applicability
of these methods to low-frequency problems (5; 6), due
to the prohibitively large computational cost.

The Wave Based Method (WBM) (7) is an alternative
deterministic technique for the analysis of vibro-acoustic
problems. The method is based on an indirect Trefftz
approach (8), in that the dynamic response variables
are described using wave functions which exactly satisfy
the governing differential equation. In this way no ap-
proximation error is made inside the domain. However,
the wave functions may violate the boundary and conti-
nuity conditions. Enforcing the residual boundary and
continuity errors to zero in a weighted residual scheme
yields a small matrix equation. Solution of this ma-
trix equation results in the contribution factors of the
wave functions used in the expansion of the dynamic
field variables. The WBM has been applied successfully
for many steady-state structural dynamic problems (9),
interior acoustic problems (10) and interior and exterior
vibro-acoustic problems (11). It is shown that, due to
the small model size and the enhanced convergence char-
acteristics, the WBM has a superior numerical perfor-
mance as compared to the element based methods. As
a result, problems at higher frequencies may be tackled,
making it an attractive technique for studying underwa-
ter scattering phenomena and sonar applications.

This paper discusses a new modelling concept for acous-
tic radiation and scattering problems, particularly suited
for the treatment of problems involving different dis-
tinct objects (scatterers). The main idea is to assign
each object in the problem to a particular model level.
In this level, the scattering on this particular object is
treated using existing wave based modelling techniques
for unbounded problems. The general problem is then
composed by combining the different levels through an
adapted weighted residual formulation.

The first part of this paper briefly addresses the general
acoustic problem setting and the WB modelling tech-
niques used for the models in each level. A second part
is devoted to the discussion of the new multi-level mod-
elling concept. Finally, the new method is applied to an
underwater scattering problem, in order to illustrate its
potential and validate the accuracy of the method.

Acoustics 08 Paris

8926



2 Problem description
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Figure 1: A 2D unbounded acoustic problem

Consider a general 2D unbounded acoustic problem as
shown in figure 1. The steady-state acoustic pressure
inside the problem domain is governed by the inhomo-
geneous Helmholtz equation:

∇2p(r) + k2p(r) = −jρ0ωδ(r, rq)q (1)

with ω the circular frequency and k = ω/c the acoustic
wave number. The acoustic fluid is characterised by the
density ρ0 and the speed of sound c. The fluid is excited
by a cylindrical acoustic volume velocity source q. The
problem boundary Γ is constituted of 2 parts: the finite
part of the boundary, Γb, and the boundary at infinity,
Γ∞. Based on the three types of commonly applied
acoustic boundary conditions, the finite boundary can
be further divided in three non-overlapping parts: Γb =
Γv ∪ Γp ∪ ΓZ . If we define the velocity operator Lv(•)
as:

Lv(•) =
j

ρ0ω

∂•
∂n

, (2)

we can write the boundary condition residuals:

r ∈ Γv : Rv = Lv(p(r))− vn(r) = 0 , (3)
r ∈ Γp : Rp = p(r)− p(r) = 0 , (4)

r ∈ ΓZ : RZ = Lv(p(r))− p(r)

Zn(r)
= 0 , (5)

where the quantities vn, p and Zn are, respectively, the
imposed normal velocity, pressure and normal impedance.
At the boundary at infinity Γ∞ the Sommerfeld radia-
tion condition for outgoing waves is applied. This con-
dition ensures that no acoustic energy is reflected at
infinity and is expressed as

lim
|r|→∞

(√
r
(∂p(r)

∂|r| + jkp(r)
))

= 0 . (6)

Solution of the Helmholtz equation (1) together with
the associated boundary conditions (3), (4), (5) and (6)
yields a unique acoustic pressure field p(r).

2.1 The wave based method

The Wave Based Method (WBM) (7) is a numerical
modelling method based on an indirect Trefftz approach
for the solution of steady-state acoustic problems in
both bounded and unbounded problem domains. The
field variables are expressed as an expansion of wave
functions, which inherently satisfy the governing equa-
tion, in casu the Helmholtz equation (1). The degrees of
freedom are the weighting factors of the wave functions
in this expansion. Enforcing the boundary and conti-
nuity conditions using a weighted residual formulation
yields a system of linear equations whose solution vector
contains the wave function weighting factors.

Partitioning into subdomains
When applied for bounded problems, a sufficient condi-
tion for the WB approximations to converge towards the
exact solution, is convexity of the considered problem
domain (7). In a general acoustic problem, the acoustic
problem domain may be non-convex so that a partition-
ing into a number of convex subdomains is required.

�
� t�

Figure 2: A WB partitioning of the 2D unbounded
problem

When the WBM is applied for unbounded problems,
an initial partitioning of the unbounded domain into a
bounded and an unbounded region precedes the parti-
tioning into convex subdomains (10). Figure 2 illus-
trates the principle. The unbounded acoustic problem
domain is divided into two non-overlapping regions by
a truncation curve Γt. The unbounded region exterior
to Γt is considered as one acoustic subdomain.

Acoustic pressure expansion
The steady-state acoustic pressure field p(α)(r) in an
acoustic subdomain Ω(α) (α = 1 . . . NΩ, with NΩ the
number of subdomains) is approximated by a solution
expansion p̂(α)(r):

p̂(α)(r) =
n(α)

w∑
w=1

pw
(α)Φ(α)

w (r) + p̂(α)
q (r). (7)

The wave function contributions p
(α)
w are the weighting

factors for each of the selected wave functions Φ(α)
w . For

a complete description of the functions Φ(α)
w the reader

is referred to Pluymers (10).

Wave based model
The function expansions used guarantee compliance with
the Helmholtz equation inside the domain and the Som-
merfeld radiation condition at infinity. The boundary
conditions and subdomain continuity are enforced by
means of a weighted residual formulation. This yields
a square system that is solved for the unknown wave
function contributions. For a detailed description of the
system matrices, the reader is referred to Pluymers
(10).

3 A multi-level concept in Wave
Based Modelling

The WBM has shown to be efficient in modelling 2D
acoustic radiation problems (11). However, when mul-
tiple acoustic scatterers are present, the method’s effi-
ciency tends to deteriorate. This is due to the fact that
the circular truncation line Γt, whose interior domain
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is modelled using a set of wave function expansions for
bounded subdomains, needs to enclose all the scatterers
at once. As a result many unbounded wave functions
need to be included in the model in order to accurately
couple the spatial resolution of the expansions in the
bounded and unbounded subdomains. Moreover, since
all the scatterers are included within a single circle, a
complex partitioning of the interior is often needed in or-
der to satisfy the requirement of using convex bounded
subdomains.

To remedy this, the concept of multi-level modelling is
introduced. The main idea of the multi-level WBM ap-
proach is to consider the multiple objects in the problem
as different ’levels’ of the problem. In every level, the
scattering of one particular object is studied. The inci-
dent field for this problem is the scattered field from the
other objects and the external excitations (plane wave
or point source). Since this incident field is the result
of a scattering calculation in the other levels, all the
calculations have to be carried out simultaneously. A
weighted residual formulation links the levels, yielding
one system for the coupled problem composed of all the
levels. This system can be solved for all the unknown
weighting factors. Using these factors, the scattering
field can be calculated in each level. The total result-
ing pressure field is then composed from the fields of all
levels. This procedure is illustrated in figure 3.
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Figure 3: Graphic representation of the multi-level
modelling concept

When looking at the different levels, it is clear that there
are parts of the problem for which the levels geometri-
cally overlap. More precisely, this overlap takes place
in the unbounded part of the wave models of the dif-
ferent levels. Consequently, the pressure field in this
unbounded part of the total problem will be described
as a summation of the fields present in each level:

pub,total =
nλ∑
i=1

ΦLi
w · pLi

w . (8)

where nλ is the number of different levels in the problem.
Each of the sets Φ(Li)

w is a complete set for the Neumann
problem on its associated truncation circle ΓLi

t .

With the function set chosen, the wave model for this
domain can now be constructed by enforcing the bound-
ary conditions through the weighted residual formula-
tion. The residuals of the boundary conditions are now
evaluated using the new, combined wave function set.
Similarly, continuity conditions can be applied using the

same types of residuals. This continuity can be used to
couple the multi-level unbounded wave set with bounded
domains in the appropriate level, in the same way as a
coupling would be set up between a conventional un-
bounded and bounded wave domain. The bounded do-
main in each of the levels can then further be modelled
using the conventional wave based domain division tech-
niques and function sets. If the test functions used in
the weighted residual are random functions, then the
residuals on the boundary and continuity conditions are
forced to zero in an integral sense, resulting in a nu-
merical solution for the physical problem. To obtain a
numerical model which can be solved, these test func-
tions are written as a randomly weighted sum of certain
basis functions ta:

p̃(•)(r) =
n(•)

a∑
a=1

p̃a
(•)t(•)a (r) = t(•)(r)p̃w

(•), (9)

with p̃a random weighting factors. The choice of the
basis functions needs to be such that this basis is rich
enough to be combined to any field on the boundary con-
sidered, but may vary for different parts of the bound-
ary. When integrating the boundary of a conventional
(bounded) domain, an expansion in terms of the same
basis functions as used to describe the acoustic vari-
ables can be used (like in de the widely used Galerkin
approach). For the multi-level unbounded domain, an
alternative selection of test functions is proposed. Since
the unbounded basis functions ΦLi

w for each of the levels
are chosen such that they can accurately approximate
any field on the associated truncation ΓLi

t , this set will
suffice as basis for the test functions on this part of the
boundary.

4 Numerical validation example

This section discusses a numerical underwater acoustics
example which illustrates the applicability of the pro-
posed concept for complex scattering calculations. The
configuration studied is shown in figure 4. To tackle
this problem with the WBM, the problem domain is
partitioned in 10 bounded subdomains. Each object is
considered in a separate level, yielding in total 5 levels
in the model.
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Figure 4: Problem definition
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Figure 5: Pressure Amplitude [Pa], 3000Hz
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Figure 6: Relative pressure amplitude error [%], 3000Hz

The acoustic fluid is water (c = 1500m/s, ρ0 = 1000kg/m3).
The system is excited by a point source in the c-shape
with amplitude q = 1.

Several indirect variational BEM models are built for
this problem using LMS/Sysnoise Rev5.6 . The mesh
details are given in table 1. The number of DOF’s in
the wave model used to solve this problem varies with
the frequency, and ranges between 1225 and 2347 and
the model is constructed such that the calculation time
to calculate a frequency response function (FRF), con-
sisting of 900 frequency lines between 3000 and 7500Hz
is the same as the time needed by the most coarse BE
model. All calculations are performed on a 2.66GHz
Linux-based Intel Xeon system.

element � calculation εav

size DOF time [s] [dB]
2.5mm 27484 540000 /

BEM 5mm 13536 83160 0.7460
7.5mm 9160 27450 1.9382
12.5mm 5498 6030 5.2144

WBM / 1225-2347 5760 0.7431

Table 1: Model information

The contours in figure 5 show the amplitude of the
acoustic pressure field due to the acoustic point source
at a frequency of 3000Hz, calculated using the WBM.
In figure 6, the relative error of this pressure amplitude
with respect to the results from the most detailed BEM
calculation is plotted. It is observed that the errors re-
main well within the range of 0 − 1%, except at the
pressure nodal lines, where the error calculation itself is
inaccurate due to almost-zero division. The errors are
also higher along the coupling arcs between bounded
domains and the multi-level unbounded domain. These
coupling errors do however not influence the prediction
accuracy in the rest of the problem domain.

Figure 7 compares the frequency response function of
the acoustic pressure amplitude in response point 6 in-
dicated in figure 4 for the BEM reference model and the
WB model. The good match between the WBM and the
BEM reference is evident from this figure. A more pre-
cise comparison is made in figure 8 where the prediction

errors (averaged over all the response points in figure 4)
for three BEM models and one WBM model are shown.
It is clear that the WBM result (bottom figure) is far
more accurate than the one obtained by a BEM model
with the same calculation time (top figure). As shown
in the two middle figures, the BEM mesh needs to be
refined twice in order to obtain the same overall aver-
age prediction accuracy as the WBM calculation. This
is also indicated by the frequency averaged prediction
errors εav in table 1. This results in an average compu-
tation time of 92.4s per frequency. It can be concluded
that for this validation example the WBM efficiency is
better by a factor of about 14. This clearly illustrates
the advantageous properties of the proposed modelling
concept.
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Figure 7: Pressure amplitude FRF [dB re 2.10−5Pa]
comparison: WBM and BEM reference

5 Conclusion

This paper discusses a new modelling concept, particu-
lary suited for the treatment of scattering problems in-
volving multiple objects. The main idea of the approach
is to consider the multiple objects in the problem as dif-
ferent ’levels’ of the problem. Each level considers the
scattering on one particular object, using existing WBM
techniques for bounded and unbounded problems. A
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Figure 8: Pressure amplitude error [dB re 2.10−5Pa] comparison: WBM and BEM models

special compound wave function set for the unbounded
part and an adapted weighted residual formulation link
the different levels together, yielding a single multi-level
system, describing the entire problem.

The new method is validated on a numerical example,
indicating both the excellent accuracy and the superior
numerical performance as compared to the BEM. This
reduction in computational load, combined with the lack
of pollution errors, makes the WBM particulary suited
for the treatment of multiple scatterer problems in an
extended frequency range, as compared to the element
based methods.
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