Dynamics and radiation of single cavity in an abnormal compressible bubbly media

Valeriy Kedrinskiy

Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, Lavrentyev prospect 15, 630090 Novosibirsk, Russian Federation
kedr@hydro.nsc.ru
Till now in models of bubbly media the kinetics describing its state includes Rayleigh equation for a single bubble pulsation in an incompressible liquid and does not consider its important physical feature - abnormal compressibility. The paper is devoted to one of possible decisions of this problem. The equation of a single cavity dynamics in the equilibrium (on pressure) bubbly medium was constructed. The numerical analysis of features of cavity dynamics and the radiation generated by cavity was executed. The analysis of radiation parameters was restricted by vicinity of cavity wall from a liquid side. The studies have shown that the degree of compression of a cavity by a stationary shock wave goes down when the volumetric concentration of gas phase (k) in the medium increases. The amplitude of its pulsations essentially decrease and function $R(t)$ (radius cavity vs. time) already at $k = 3\%$ practically disappear and asymptotically (without oscillations) tends to the equilibrium state. The structure of a radiation wave takes the "soliton" form the amplitude of which is essentially lesser, and the width is much more in the comparison with corresponding parameters for a single-phase liquid.

1 Introduction

Although theoretical studies of bubbly media have been performed for a long time, a “collective” velocity potential that would allow one to derive an equation for the pulsation of an individual bubble in a system of interacting bubbles has not been constructed. For example, in models such as the Iordanskii–Kogarko–van Wijngaarden (IKW-model), this interaction is taken into account indirectly, through the pressure field [1, 2, 3]. The main feature of the IKW model is that the bubbly medium is treated as a homogeneous medium in which averaged density, pressure, and velocity are determined. The state of the medium at each time is described by a system of relations, including the equations of state for the mixture and the liquid and gaseous components, which are closed by a kinetic equation — the Rayleigh equation for a single bubble, in which the pressure at infinity on the right side is replaced by the average pressure in the medium [4]. This means that, in essence, the IKW model and its numerical analogs do not consider bubbles and take into account the special property of the medium considered — the pulsation nature of the change in state and the peculiar transfer of the energy of the wave field to the kinetic energy and internal energy of the medium and back. If necessary, the model predicts what occurs with any bubble in the system at any point of the space studied. This concept of the interaction of the field and medium turned out to be adequate to real physical processes that occur not only in artificially produced bubbly systems during their interaction with shock waves [4, 5, 6] but also in liquid media with natural microinhomogeneities, in which dynamic loading by rarefaction waves (phases) leads to the occurrence of cavitation processes [7].

Garipov [8] was apparently one of the first to undertake an attempt to construct the “collective” potential. A simple model for the interaction of two bubbles and the pressure waves radiated by them was studied by Fujikawa and Takahira [9], who concluded that the compressibility of the liquid phase plays an important role. This conclusion is fairly obvious since in [9] the radiation of bubbles was considered. It has been shown that for some special combinations of the initial radii of two bubbles and the initial gas pressures in them, the smaller bubble generates high pressure pulses with amplitudes six times higher than the radiation amplitude of a single bubble. This effect disappears if the bubbles have the same size. It can be assumed that the mechanism of this phenomenon is due to the over-compression of the smaller bubble by the shock wave generated by the larger bubble. Gasenko et al. [10] proposed a model for perturbation propagation that takes into account the compressibility of the carrier phase, i.e., corresponds to both (high- and low-frequency) branches of the dispersion curve. We note that although the two-phase model takes into account the “collective” bubble pulsations indirectly, through the average pressure field, the states of both phases “exist” separately. Thus, bubble pulsations under the action of the average pressure and its losses due to radiation are considered in the carrier single-phase medium. In this situation, it is necessary to elucidate whether all advantages of the averaging model are taken into account. As is known, a bubbly medium is a homogeneous system that has an important physical feature — abnormal compressibility, which is manifested in abnormally low velocities of perturbation propagation. The question arises: should this feature be manifested in the behavior of the “collective” bubble in this system? In the present paper, a model is constructed that describes the dynamics and radiation of a single bubble under conditions of abnormal compressibility of a bubbly liquid. The bubble behavior in this medium is estimated numerically.

2 The cavity dynamics in equilibrium bubble media

Statement of problem

The dynamics of a single bubble in a compressible bubbly liquid is considered. The flow is considered as potential, $u = -\nabla \varphi$, and the velocity potential in a compressible bubbly liquid can be written in the standard form

$$\varphi = \Phi(t - r/c_b)/r, \quad (1)$$

where $c_b^2 = c_l^2/(1 + k_0 B)$ is the squared sound velocity in the unperturbed bubbly medium, k_0 is the volume concentration of the gas phase, and $B = nB/p_0$ (n and B are constants in the equation of state of the liquid component). Then, after differentiation Eq (1) with respect to r the mass velocity is defined by the expression

$$u = \Phi/r^2 + \Phi'/c_b r, \quad (2)$$

where the prime denotes differentiation with respect to
\[\zeta = t - r/c_b, \] and the Cauchy–Lagrange integral, with allowance for (1), becomes
\[\Phi' = r(\omega + u^2/2) \] (3)
(\[\omega = \int dp/\rho \] is the enthalpy). Introducing the function \[\Omega = \omega + u^2/2, \] from Eq (2) and Eq (3), we find the expressions for \(\Phi \) and its derivative:
\[\Phi = r^2(u - \Omega/c_b), \]
\[\Phi' = r^2(\omega_t - \Omega_t/c_b) = r^2[u_t - (\omega_t + uu_t)/c_b]. \] (4)
Here \(\Phi_t = \Phi' \). From the conservation laws
\[u_r + 2u \frac{2u}{r} = -\frac{1}{c_b^2} \frac{d\omega}{dt}, \quad \frac{\partial \omega}{\partial r} = -\frac{du}{dt}, \]
we find the derivatives \(u_t \) and \(\omega_t \):
\[\frac{du}{dt} + \frac{2u^2}{r} + \frac{u}{c_b^2} \frac{d\omega}{dt} = u_t, \quad \omega_t = \frac{du}{dt} + \frac{d\omega}{dt}. \]

Creation of cavity pulsation equation

Substituting these derivatives into Eq (4) and using Eq (3), we obtain
\[r\left(1 - \frac{2u}{c_b}\right) \frac{du}{dt} + \frac{3}{2} u^2 \left(1 - \frac{4u}{3c_b}\right) = \]
\[\omega + \frac{r}{c_b^2} \left(1 - \frac{u}{c_b} + \frac{u^2}{c_b^2}\right) \frac{d\omega}{dt}, \] (5)
If \(r = R, u = \dot{R} \), and \(\omega = H \) on the cavity wall, Eq (5) becomes
\[R\left(1 - \frac{2\dot{R}}{c_b}\right) \dot{R} + \frac{3R^2}{2} \left(1 - \frac{4\dot{R}}{3c_b}\right) = \]
\[= H + \frac{R}{c_b^2} \left(1 - \frac{\dot{R}}{c_b} + \frac{\dot{R}^2}{c_b^2}\right) \frac{dH}{dt}. \] (6)
To determine the enthalpy \(H \) on the cavity wall, we assume that outside the cavity, the bubbly medium is in pressure equilibrium. Then, for the isothermal case, provided that the phases are in pressure equilibrium \(\rho k = p_0 k_0 \), the equation of state in the form of the Lyakhov equation [11]
\[\rho_0/\rho = k(p/p_0)^{-1/\gamma} + (1 - k)P^{-1/n}, \]
where \(P = 1 + n(p - p_0)/(\rho_0 c_0^2) \) is on the order of unity, becomes
\[\rho_0/\rho = k_0(p_0/p)^2 + 1 - k_0(p_0/p). \]
The enthalpy on the cavity wall is defined by the integral
\[H = \frac{1}{\rho_0} \int_{p_0}^{p} \frac{p}{\rho} dp = \frac{1}{\rho_0} \int_{p_0}^{p} \left[k_0 \left(\frac{p_0}{p}\right)^2 + 1 - k_0 \frac{p_0}{p}\right] dp, \]
and, hence,
\[H = \frac{p(R) - p_\infty}{\rho_0(1 - k_0)} + \frac{p_0 k_0}{\rho_1(1 - k_0)} \left[k_0 \frac{p_0}{p_\infty} - \frac{p_0}{p(R)} - \ln \frac{p(R)}{p_\infty}\right]. \]
In this expression, the second term can be ignored. As a result, we have
\[H = \frac{p(R) - p_\infty}{\rho_0(1 - k_0)}. \]
In view of the derivative of the enthalpy, the equation describing the cavity pulsation Eq (6) in the bubbly medium finally becomes
\[R\left(1 - \frac{2\dot{R}}{c_b}\right) \dot{R} + \frac{3R^2}{2} \left(1 - \frac{4\dot{R}}{3c_b}\right) = \]
\[= \frac{p(R)}{\rho_0(1 - k_0)} \left[1 - 3\gamma \left(\frac{\dot{R}}{c_b} - \frac{\dot{R}^2}{c_b^2} + \frac{\dot{R}^3}{c_b^3}\right)\right] - \frac{p_\infty}{\rho_1(1 - k_0)}. \] (7)
Obviously, for small values of the volumetric concentration \(k_0 \) the bubbly media containing the spherical cavity studied, it can be assumed that the external pressure (shock-wave amplitude) \(p_\infty \) does not depend on \(k_0 \) and that the pressure equilibrium in this medium is established instantaneously. Acoustic losses (radiation) are taken into account by the term
\[P^* = -3\gamma \frac{p(R) - \rho_0}{\rho_0(1 - k_0)} \left(\frac{\dot{R}}{c_b} - \frac{\dot{R}^2}{c_b^2} + \frac{\dot{R}^3}{c_b^3}\right) \]
on the right side of Eq (7).

Remarks to Eq (7) The role of the acoustic corrections \(R/c_b \) on the left side of the equation is easily determined as follows. Multiplication of both sides of the equality into \(2R^2 \) reduces the left side of Eq (7) to the form
\[\frac{d}{dR} R^3 \dot{R}^2 \left(1 - \frac{4\dot{R}}{3c_b}\right), \]
which allows the first integral of Eq (7) to be written. Solution of Eq (7) ignoring radiation (ignoring the term with the derivative \(dH/dt \) shows that the correction given above influences only the period of bubble pulsation. We note that by analogy with the formulation of the problem of the interaction of two identical bubbles considered in [9], as a first approximation, one can find the potential in the vicinity of the central bubble of \(N \) bubbles that are uniformly distributed at the sites of a lattice of cubic elements. In the equation describing bubble pulsations in such a lattice in an incompressible liquid, the first integral has the form
\[\frac{d}{dR} R^3 \dot{R}^2 \left(1 + \alpha N \frac{R}{l}\right) = 2R^2\frac{p(R) - p_\infty}{\rho_1}. \]
An increase in the volume fraction of the gas leads to a reduction in the number of pulsations, resulting in a decrease in the pressure amplitude and an increase in the time of compression to the minimum radius Fig. 3. This result is obvious: the pulsations of the “interacting” bubbles become lower-frequency. An increase in the volume fraction of the gas leads to a reduction in the number of pulsations, result-

where \(\alpha < 1 \); \(l \) is the lattice-element parameter related to the volumetric concentration by the formula \(k_0 = (R_0/l)^3 4\pi/3 \). It can be concluded that interaction of the bubbles results in a reduction in their pulsation frequency with increasing \(k_0 \).

Results of Numerical Analysis of Eq (7)

Here, we give the results of calculating the dynamics of the relative radius of a bubble \(y = R/R_0 \), its radial velocity \(y = dy/d\tau \), and the radiation \(P^* \) (acoustic losses) as a function of the dimensionless time \(\tau = t\sqrt{p_0/\rho_0}/R_0 \) for an amplitude of the external stationary pressure \(p_\infty = 10 \) MPa, a hydrostatic pressure \(p_0 = 0.1 \) MPa, and initial bubble radius \(R_0 \). Fig. 1 shows the calculated dynamics and radiation profile of bubble in a single-phase liquid. We note that the radiation wave is determined primarily by the first pulsation of the radial velocity (by the acceleration dynamics of the cavity wall). The supply of an insignificant amount of a gas phase (\(k_0 = 0.01 \% \)) leads to a significant change in the radiation parameters Fig. 2. In this case, the pressure amplitude is almost halved.

A further increase in the volume of the gas phase (to 0.1%) leads to a decrease in the degree of compression and an increase in the time of compression to the minimum radius Fig. 3. This result is obvious: the pulsations of the “interacting” bubbles become lower-frequency. An increase in the volume fraction of the gas leads to a reduction in the number of pulsations, result-
ing in faster attainment of the equilibrium state of the bubble Fig. 3. Fig. 4 shows the radial velocity and dynamics of a single bubble in an equilibrium bubbly liquid at $k_0 = 0.5\%$. From the dependences presented in Fig. 4, it follows that as the gas-phase concentration in the surrounding liquid increases to a value $k_0 = 0.5\%$, the bubble performs only one pulsation. At $k_0 = 3\%$, the damping fluctuations disappear and the bubble asymptotically reaches an equilibrium state already during the first compression Fig. 5. It is easy to see that for this value of k_0, the radiation profile takes the shape of a soliton whose amplitude is approximately 50 times smaller than the corresponding value for the single-phase liquid (see Fig. 5). In this case, the bubble dynamics without overcompression (inertial terms do not “work”) is described by a function that tends asymptotically to the equilibrium state. We note that this state does not depend on the value of k_0 and is determined only by the external pressure. Figure Fig. 6 shows a curve of bubble collapse under the action of a shock wave with a constant profile and an amplitude of 10 MPa at $k_0 = 0\cdot 3 \cdot 10^{-2}$.

3 Conclusion

According to the results of the numerical analysis, starting with values of $k_0 \approx 3\%$, the process of adiabatic compression of the cavity reaches a peculiar threshold where dynamic equilibrium is established between the radiation and the inertia of the attached mass (see Fig. 5), whose decrease in the energetic balance is compensated by increased acoustic losses. There occurs a peculiar regime of inertia-free compression (unlimited cumulation) to the cavity radius corresponding to the equilibrium state. Thus, the calculations performed show that the proposed model allows one to analyze the bubble dynamics in an abnormally compressible liquid and to study the radiation structure and parameters.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (a Grant No. 06-01-00317) and the Integration Project of the Siberian Division of the Russian Academy of Sciences No. 4.14.4.

References