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Till now in models of bubbly media the kinetics describing its state includes Rayleigh equation for a
single bubble pulsation in an incompressible liquid and does not consider its important physical feature
- abnormal compressibility. The paper is devoted to one of possible decisions of this problem. The
equation of a single cavity dynamics in the equilibrium (on pressure) bubbly medium was constructed.
The numerical analysis of features of cavity dynamics and the radiation generated by cavity was
executed. The analysis of radiation parameters was restricted by vicinity of cavity wall from a liquid
side. The studies have shown that the degree of compression of a cavity by a stationary shock wave goes
down when the volumetric concentration of gas phase (k) in the medium increases. The amplitude of its
pulsations essentially decrease and function R(t) (radius cavity vs. time) already at k = 3 % practically
disappear and asymptotically (without oscillations) tends to the equilibrium state. The structure of a
radiation wave takes the ”soliton” form the amplitude of which is essentially lesser, and the width is
much more in the comparison with corresponding parameters for a single-phase liquid.

1 Introduction

Although theoretical studies of bubbly media have been
performed for a long time, a “collective” velocity po-
tential that would allow one to derive an equation for
the pulsation of an individual bubble in a system of in-
teracting bubbles has not been constructed. For exam-
ple, in models such as the Iordanskii–Kogarko–van Wi-
jngaarden (IKW-model), this interaction is taken into
account indirectly, through the pressure field [1, 2, 3].
The main feature of the IKW model is that the bubbly
medium is treated as a homogeneous medium in which
averaged density, pressure, and velocity are determined.
The state of the medium at each time is described by
a system of relations, including the equations of state
for the mixture and the liquid and gaseous components,
which are closed by a kinetic equation — the Rayleigh
equation for a single bubble, in which the pressure at
infinity on the right side is replaced by the average pres-
sure in the medium [4]. This means that, in essence, the
IKW model and its numerical analogs do not consider
bubbles and take into account the special property of
the medium considered — the pulsation nature of the
change in state and the peculiar transfer of the energy
of the wave field to the kinetic energy and internal en-
ergy of the medium and back. If necessary, the model
predicts what occurs with any bubble in the system at
any point of the space studied. This concept of the
interaction of the field and medium turned out to be
adequate to real physical processes that occur not only
in artificially produced bubbly systems during their in-
teraction with shock waves [4, 5, 6] but also in liquid
media with natural microinhomogeneities, in which dy-
namic loading by rarefaction waves (phases) leads to the
occurrence of cavitation processes [7].

Garipov [8] was apparently one of the first to under-
take an attempt to construct the “collective” potential.
A simple model for the interaction of two bubbles and
the pressure waves radiated by them was studied by Fu-
jikawa and Takahira [9], who concluded that the com-
pressibility of the liquid phase plays an important role.
This conclusion is fairly obvious since in [9] the radi-
ation of bubbles was considered. It has been shown
that for some special combinations of the initial radii
of two bubbles and the initial gas pressures in them,
the smaller bubble generates high pressure pulses with
amplitudes six times higher than the radiation ampli-
tude of a single bubble. This effect disappears if the
bubbles have the same size. It can be assumed that
the mechanism of this phenomenon is due to the over-

compression of the smaller bubble by the shock wave
generated by the larger bubble. Gasenko et al. [10] pro-
posed a model for perturbation propagation that takes
into account the compressibility of the carrier phase, i.e.,
corresponds to both (high- and low-frequency) branches
of the dispersion curve. We note that although the two-
phase model takes into account the “collective” bub-
ble pulsations indirectly, through the average pressure
field, the states of both phases “exist” separately. Thus,
bubble pulsations under the action of the average pres-
sure and its losses due to radiation are considered in
the carrier single-phase medium. In this situation, it
is necessary to elucidate whether all advantages of the
averaging model are taken into account. As is known,
a bubbly medium is a homogeneous system that has an
important physical feature — abnormal compressibility,
which is manifested in abnormally low velocities of per-
turbation propagation. The question arises: should this
feature be manifested in the behavior of the “collective”
bubble in this system? In the present paper, a model is
constructed that describes the dynamics and radiation
of a single bubble under conditions of abnormal com-
pressibility of a bubbly liquid. The bubble behavior in
this medium is estimated numerically.

2 The cavity dynamics in equilib-
rium bubble media

Statement of problem

The dynamics of a single bubble in a compressible bub-
bly liquid is considered. The flow is considered as po-
tential, u = −∇ϕ, and the velocity potential in a com-
pressible bubbly liquid can be written in the standard
form

ϕ = Φ(t− r/cb)/r, (1)

where c2
b = c2

l /(1+k0B̄) is the squared sound velocity in
the unperturbed bubbly medium, k0 is the volume con-
centration of the gas phase, and B̄ = nB/p0 (n and B
are constants in the equation of state of the liquid com-
ponent). Then, after differentiation Eq (1) with respect
to r the mass velocity is defined by the expression

u = Φ/r2 + Φ′/(cbr), (2)

where the prime denotes differentiation with respect to
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ζ = t − r/cb, and the Cauchy–Lagrange integral, with
allowance for (1), becomes

Φ′ = r(ω + u2/2) (3)

(ω =
∫

dp/ρ is the enthalpy). Introducing the function
Ω = ω + u2/2, from Eq (2) and Eq (3), we find the
expressions for Φ and its derivative:

Φ = r2(u− Ω/cb),

Φ′ = r2(ut − Ωt/cb) = r2[ut − (ωt + uut)/cb]. (4)

Here Φt = Φ′. From the conservation laws

ur +
2u

r
= − 1

c2
b

dω

dt
,

∂ω

∂r
= −du

dt
,

we find the derivatives ut and ωt:

du

dt
+

2u2

r
+

u

c2
b

dω

dt
= ut, ωt = u

du

dt
+

dω

dt
.

Creation of cavity pulsation equa-
tion

Substituting these derivatives into Eq (4) and using Eq (3),
we obtain

r
(
1− 2u

cb

)du

dt
+

3
2

u2
(
1− 4u

3cb

)
=

= ω +
r

cb

(
1− u

cb
+

u2

c2
b

)dω

dt
. (5)

If r = R, u = Ṙ, and ω = H on the cavity wall, Eq (5)
becomes

R
(
1− 2Ṙ

cb

)
R̈ +

3Ṙ2

2

(
1− 4Ṙ

3cb

)
=

= H +
R

cb

(
1− Ṙ

cb
+

Ṙ2

c2
b

)dH

dt
. (6)

To determine the enthalpy H on the cavity wall, we
assume that outside the cavity, the bubbly medium is
in pressure equilibrium. Then, for the isothermal case,
provided that the phases are in pressure equilibrium
(pk = p0k0), the equation of state in the form of the
Lyakhov equation [11]

ρ0/ρ = k(p/p0)−1/γ + (1− k)P−1/n,

where P = 1 + n(p− p0)/(ρlc
2
l ) is on the order of unity,

becomes

ρ0/ρ = k0(p0/p)2 + 1− k0(p0/p).

The enthalpy on the cavity wall is defined by the integral

H =
1
ρ0

p(R)∫

p∞

ρ0

ρ
dp =

1
ρ0

p(R)∫

p∞

[
k0

(p0

p

)2

+ 1− k0
p0

p

]
dp,

and, hence,

H =
p(R)− p∞
ρl(1− k0)

+
p0k0

ρl(1− k0)

[ p0

p∞
− p0

p(R)
− ln

p(R)
p∞

]
.

In this expression, the second term can be ignored. As
a result, we have

H =
p(R)− p∞
ρl(1− k0)

.

In view of the derivative of the enthalpy, the equation
describing the cavity pulsation Eq (6) in the bubbly
medium finally becomes

R
(
1− 2Ṙ

cb

)
R̈ +

3
2
Ṙ2

(
1− 4Ṙ

3cb

)
=

=
p(R)

ρl(1− k0)

[
1−3γ

( Ṙ

cb
− Ṙ2

c2
b

+
Ṙ3

c3
b

)]
− p∞

ρl(1− k0)
. (7)

Obviously, for small values of the volumetric concentra-
tion k0 the bubbly media containing the spherical cavity
studied, it can be assumed that the external pressure
(shock-wave amplitude) p∞ does not depend on k0 and
that the pressure equilibrium in this medium is estab-
lished instantaneously. Acoustic losses (radiation) are
taken into account by the term

P ∗ = − 3γp(R)
p0(1− k0)

( Ṙ

cb
− Ṙ2

c2
b

+
Ṙ3

c3
b

)

on the right side of Eq (7).

Remarks to Eq (7) The role of the acoustic corrections
Ṙ/cb on the left side of the equation is easily determined
as follows. Multiplication of both sides of the equality
into 2R2 reduces the left side of Eq (7) to the form

d

dR
R3Ṙ2

(
1− 4

3
Ṙ

cb

)
,

which allows the first integral of Eq (7) to be written.
Solution of Eq (7) ignoring radiation (ignoring the term
with the derivative dH/dt shows that the correction
given above influences only the period of bubble pul-
sation. We note that by analogy with the formulation
of the problem of the interaction two identical bubbles
considered in [9], as a first approximation, one can find
the potential in the vicinity of the central bubble of N
bubbles that are uniformly distributed at the sites of
a lattice of cubic elements. In the equation describing
bubble pulsations in such a lattice in an incompressible
liquid, the first integral has the form

d

dR
R3Ṙ2

(
1 + αN

R

l

)
= 2R2 p(R)− p∞

ρl
,
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Figure 1: Dynamics y(t) (a) and radiation profile P ∗(t)
(b) of a single bubble in a single-phase liquid at k0 = 0.
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Figure 2: Radiation profile P ∗(t) (a) and radial
velocity Ṙ (b) of a single bubble in an equilibrium

bubbly liquid at k0 = 0.01 %.
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Figure 3: Dynamics y(t) (a) and radiation profile P ∗(t)
(b) of a single bubble at k0 = 0.1%.
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Figure 4: Dynamics of radial velocity Ṙ (a) and alone
pulsation (b) of a single bubble for k0 = 0.5%.
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Figure 5: Radial velocity Ṙ (a) and radiation profile
P ∗(t) (b) of a single bubble at k0 = 3%.
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Figure 6: Dynamics of a single bubble in an
equilibrium bubbly liquid vs. k0: 0, 0.01, 0.05, 0.1, 0.3,

0.5, 1.0, 2.0, and 3.0%.

where α < 1; l is the lattice-element parameter re-
lated to the volumetric concentration by the formula
k0 = (R0/l)34π/3. It can be concluded that interaction
of the bubbles results in a reduction in their pulsation
frequency with increasing k0.

Results of Numerical Analysis of Eq (7)

Here, we give the results of calculating the dynamics
of the relative radius of a bubble y = R/R0, its ra-
dial velocity yτ = dy/dτ , and the radiation P ∗ (acous-
tic losses) as a function of the dimensionless time τ =
t
√

p0/ρl/R0 for an amplitude of the external station-
ary pressure p∞ = 10 MPa, a hydrostatic pressure p0 =
0.1 MPa, and initial bubble radius R0. Fig. 1 shows the
calculated dynamics and radiation profile of bubble in
a single-phase liquid. We note that the radiation wave
is determined primarily by the first pulsation of the ra-
dial velocity (by the acceleration dynamics of the cavity
wall). The supply of an insignificant amount of a gas
phase (k0 = 0.01%) leads to a significant change in the
radiation parameters Fig. 2. In this case, the pressure
amplitude is almost halved.

A further increase in the volume of the gas phase (to
0.1%) leads to a decrease in the degree of compres-
sion and an increase in the time of compression to the
minimum radius Fig. 3. This result is obvious: the
pulsations of the “interacting” bubbles become lower-
frequency. An increase in the volume fraction of the gas
leads to a reduction in the number of pulsations, result-
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ing in faster attainment of the equilibrium state of the
bubble Fig. 3. Fig. 4 shows the radial velocity and dy-
namics of a single bubble in an equilibrium bubbly liquid
at k0 = 0.5%. From the dependences presented in Fig.
4, it follows that as the gas-phase concentration in the
surrounding liquid increases to a value k0 = 0.5%, the
bubble performs only one pulsation. At k0 = 3%, the
damping fluctuations disappear and the bubble asymp-
totically reaches an equilibrium state already during the
first compression Fig. 5. It is easy to see that for this
value of k0, the radiation profile takes the shape of a soli-
ton whose amplitude is approximately 50 times smaller
than the corresponding value for the single-phase liquid
(see Fig. 5). In this case, the bubble dynamics without
overcompression (inertial terms do not “work”) is de-
scribed by a function that tends asymptotically to the
equilibrium state. We note that this state does not de-
pend on the value of k0 and is determined only by the
external pressure. Figure Fig. 6 shows a curve of bubble
collapse under the action of a shock wave with a constant
profile and an amplitude of 10 MPa at k0 = 0–3 · 10−2.

3 Conclusion

According to the results of the numerical analysis, start-
ing with values of k0 ≈ 3%, the process of adiabatic
compression of the cavity reaches a peculiar threshold
where dynamic equilibrium is established between the
radiation and the inertia of the attached mass (see Fig.
5), whose decrease in the energetic balance is compen-
sated by increased acoustic losses. There occurs a pecu-
liar regime of inertia-free compression (unlimited cumu-
lation) to the cavity radius corresponding to the equilib-
rium state. Thus, the calculations performed show that
the proposed model allows one to analyze the bubble
dynamics in an abnormally compressible liquid and to
study the radiation structure and parameters.
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