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The estimation of integrated ultrasound transmission parameters is important in ultrasound computed
tomography and of late also in photoacoustic imaging. We derive and evaluate a maximum likelihood
estimator for the measurements of integrated acoustic attenuation. This estimator is applicable to
media like soft tissue. In soft tissue, the attenuation due to dissipative effects obeys a frequency power
law. By measuring the propagation of transmitted ultrasound signals, the parameters that describe the
attenuation can be estimated. In this paper a new method is introduced for estimating the attenuation
of ultrasound media by means of transmission mode measurements. The method is based on analyzing
the noise characteristics of the received signals and the formulation of a maximum likelihood estimator.
The new estimator is compared to existing methods. Our new estimator is less restrictive on the input
signal and attenuating medium and its performance is equal or better than existing estimators.

1 Introduction

The estimation of acoustic propagation parameters like
attenuation and speed of sound are important factors in
the fields of ultrasound tissue characterization and non-
destructive material testing. An application in medi-
cal ultrasound is the reconstruction of distributions of
the propagation parameters inside an object from proj-
ections[1]. Recently methods to measure ultrasound
propagation parameters were also proposed by obtain-
ing projections appropriately in photoacoustic imaging
[2, 3, 4]. The more accurate these projections can be
estimated, the more accurate the reconstructed images
will be. The accuracy of the estimates depends on the
signal to noise ratio of the measured signal, as well as
on the performance of the estimator that is being used.
In this paper we will focus on the formulation of an ac-
curate estimator of the (projected) attenuation param-
eters. The accuracy will be presented in terms of the
bias and variance of the estimators and the resulting
root mean square error (rmse).

The ultrasound propagation estimators are used in
the application of transmission mode measurements. Mea-
suring in transmission mode means that an input signal
is generated at one side of the object and a distorted
version of this signal is measured at the opposite side of
the object. The distortion of the input signal is caused
by the ultrasound propagation parameters of the object.
The measured signal is thus a function of the input sig-
nal and the unknown ultrasound propagation param-
eters. The estimation task is now defined as finding
an estimate of the unknown ultrasound propagation pa-
rameters from the measured signal. This requires the
formulation of a measurement model that describes the
relation between the parameters and the measured sig-
nal.

We will refer in this paper to two existing ultrasound
propagation parameter estimators. These two estima-
tors will be briefly introduced and their performance
will be compared to our newly formulated estimators.

2 The ultrasound propagation pa-

rameters

The propagation of an ultrasound signal through an ul-
trasound medium consists of two contributions. First,
there is a change in amplitude of the signal and sec-
ondly there is a time delay which corresponds to the
time the signal travels through the medium. These am-
plitude and time delay effects are material properties

and are position dependent in inhomogeneous materi-
als. Besides being material dependent, the amplitude
and time delay can also depend on the frequency of the
input signal. In a very general form, we write the de-
pendence of the measured signal on the input signal and
the medium parameters as:

Y (f) = exp

[∫ (
−α(f, r)− j2π

f

c(f, r)

)
dr

]
X(f)

(1)
where α(f, r) is a frequency and position dependent
medium property describing attenuation and c(f, r) is
a frequency and position dependent medium property
describing speed of sound. For the problem of estimat-
ing the ultrasound propagation parameters, we are not
interested in the position dependency of the medium
properties. We will only look at the final result after
propagation over a certain path through in the object.
Also we will confirm our study in this paper to the es-
timation of the attenuating properties only and for now
ignore the time delay properties. The position inde-
pendent, projected or integrated attenuation function is
then the function we want to estimate:

a(f) =

∫
α(f, r)dr (2)

This function is frequency dependent, but can very well
be parametrized. Attenuation can be represented by
frequency power laws for a wide variety of materials[5]
as:

a(f) = a0|f |
y (3)

where a0 and y are material dependent parameters. The
parameter y typically varies between 0 and 2, for soft
tissue it is y = 1 and for water it is y = 2. We will
now continue with the assumption that the object will
have a power factor of y = 1, such as is the case for
soft tissue. Besides the attenuation due to dissipative
effects in the object, there can also be attenuation due
to reflection. This occurs at the boundaries of the object
and at transitions from one type of material to another
one and it is a frequency independent attenuation.

The relation between the unknown parameters and
the measured signal is now defined, but requires knowl-
edge of the input signal. A measurement of the input
signal can be obtained by performing a reference mea-
surement where the object is removed from the trans-
mission mode setup as described in [6]. The reference
measurement will then approximately be a time delayed
version of the input signal with negligible attenuation
and no dispersion when a suitable reference medium
like distilled water is used. Both the object measure-
ment and the reference measurement are a function of
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the input signal X(f):

Y (f) = exp

[
− ar − a0|f | − j2πτo(f)

]
X(f) (4)

Yw(f) = exp

[
− j2πτw

]
X(f) (5)

so that we can express the object measurement as a
function of the reference measurement:

Y (f) = exp

[
− ar − a0|f | − j2πτ(f)

]
Yw(f) (6)

The ultrasound propagation parameters are now:

ar Attenuation due to reflection
a0 Linearly with frequency increasing attenuation

constant
τ(f) Time delay function between the object

measurement and the reference measurement

Both the object and reference measurements will be
available as sampled data in the time domain. A realistic
model for noise on the measurements is additive Gaus-
sian white noise. The reference measurement is taken
without an attenuating object so that we can assume it
is a noise free observation. In the frequency domain, the
additive Gaussian white noise will manifest itself also as
additive Gaussian white noise due to the linearity and
orthogonal properties of the FFT transform. This noise
is present on both the real part and on the imaginary
part of the FFT transformed signals.

3 Ultrasound propagation param-

eter estimators

There are several solutions in finding an estimate of the
ultrasound propagation parameters from the measured
object and reference signals. We will discuss here two
existing algorithms, which both operate on the magni-
tude of the FFT transformed signals and finally we will
describe our maximum likelihood estimator.

3.1 Spectral shift estimator

The spectral shift estimator[7] is based on the fact that
the input signal has a Gaussian distribution in the fre-
quency domain. After propagating a Gaussian modu-
lated signal through a medium with a linear with fre-
quency increasing attenuation function, an output sig-
nal will result which still has a Gaussian distribution in
the frequency domain. This signal will have the same
bandwidth but a lower center frequency. The amount
of down shift in center frequency is a measure for the
attenuation constant a0:

a0 =
Δf

σ2
w

(7)

The bandwidth or variance of the Gaussian σ2
w is cal-

culated on the magnitude of the FFT of the measured
object signal instead of the power of the measured ob-
ject signal as was done by Kuc [7]. The reason for this,
is that we will estimate the spectral shift also on the

magnitude signals and not on the power signals, since
this gives better estimation performance.

Besides finding the value for a0 we can also estimate
the reflection coefficient ar. To do so, we use the two
relations describing the original Gaussian spectrum and
the shifted Gaussian spectrum:

|Yw(f)| = K exp

[
−

1

2σ2
w

(f − fc)
2

]
(8)

|Y (f)| = K exp

[
−

1

2σ2
w

(f − (fc − a0σ
2
w))2

]
×

exp

[
−ar − fca0 +

1

2
a2
0σ

2
w

]
(9)

where now a0 is a known (estimated) parameter. Using
the estimated value of a0 we can find an estimate of the
parameter ar. To do so we find a least squares estimate
of the term exp

[
−ar − fca0 + 1

2a2
0σ

2
w

]
and calculate the

estimate of ar by inverting the function.
The performance of the estimator actually depends

on the performance of estimating the frequency shift
in the frequency domain. We have implemented two
approaches for estimating the center frequency of the
object signal.

Estimating the first moment One approach is based
on calculating the center frequency using the weighted
sum of the frequency components. The idea be-
hind the approach is that the magnitude of the
FFT transformed object signal can be seen as a
probability density function (pdf) and calculating
the first moment gives us the mean of the pdf.
The weights were chosen to be equal to the mag-
nitude of the FFT transformed object signal and
normalized to a sum of one. To avoid a biased es-
timate, only a selection of frequency components
was used, so that on both sides of the mean an
equal number of frequency components.

Matched filter with a Gaussian template The other
approach was based on correlating a Gaussian tem-
plate with the magnitude signal over a range of
frequency shifts. The frequency shift that gener-
ates the highest correlation value was chosen as
the center frequency of the Gaussian in the object
signal.

After extensive simulations it was clear that the matched
filter approach lead to superior performance in terms of
rmse than the first moment approach.

3.2 Least squares fit

Another commonly used estimator is based on fitting
a straight line through the logarithm of the division of
the magnitude of the object signal with the magnitude
of the reference signal. If we take the logarithm after
division we get a linear function:

ln

(
|Y (f)|

|Yw(f)|

)
= −ar − a0|f | (10)

and fitting this function to the data in a least squares
sense will give us the estimated ar and a0 values. The
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measurements |Y (f)| are noisy and care should be taken
when the signal to noise ratio (SNR) becomes too low.
A too low SNR will degrade the performance of this
estimator, since no weighting of the data is performed.

We will propose a solution based on this least squares
fit with weighting in the next section on the maximum
likelihood estimator.

3.3 Maximum likelihood estimator

A maximum likelihood estimator finds an estimate of
the unknown parameters x by maximizing the likelihood
function of measurements z of these unknown parame-
ters:

xML = arg max
x

p(z|x) (11)

In this section we will look at an estimator that op-
erates on transformed measurements, by applying the
logarithm on the magnitude of the measured FFT sig-
nals. Applying a log function to the FFT transformed
signals will linearize the exponential function to a linear
function, as was observed in the least squares fitting so-
lution. However, after applying the logarithm and mag-
nitude function to the measurements, the noise on the
measurements will be transformed non-linearly and not
be Gaussian anymore. For larger values of the SNR, a
first order Taylor expansion gives a good representation
for the behavior of the function around the uncertainty
domain. Consequently, for larger values of the SNR we
can deal with the noise distribution as additive Gaussian
noise due to the linear behavior.

Suppose we use a set of n frequency components in
the estimation f = [f1 . . . fn]T . Our log magnitude mea-
surements, which are linear functions of the parameters
x will be represented in the following vector:

z = [z1 . . . zn]T (12)

We obtain the measurements z by the following non-
linear transforms on the measured object signal:

zi = hi(yi) = ln

⎛
⎝

√
y2
R,i + y2

I,i

|Yw(fi)|

⎞
⎠ (13)

where the complex quantity yi = yR,i + jyI,i represents
the complex FFT object measurement Y (fi). The noise
on yi is additive Gaussian with a covariance of:

Pyy =

[
σ2

y 0
0 σ2

y

]
(14)

so all frequency components have the same noise covari-
ance, and the real and imaginary parts of each compo-
nent have the same noise variance. The resulting mea-
surements, which are linear in the unknown parameters,
are given by:

zi = −ar − a0fi (15)

We will model the noise on the transformed measure-
ments z also as additive Gaussian noise. The variance of
this noise will be calculated by linearization of the non-
linear measurement transformation functions. For each
of the elements zi we can calculate the resulting variance
from the linearized measurement transform function:

σ2
zi

= (∇hi)
T

[
σ2

y 0
0 σ2

y

]
∇hi (16)

Where ∇hi are the gradients of the measurement trans-
form functions:

∇hi =
1

y2
R,i + y2

I,i

[
yR,i

yI,i

]
(17)

The resulting variances of the elements zi can now be
calculated:

σ2
zi

=
σ2

y

||yi||
2

(18)

This expression was obtained by evaluating the gradi-
ents at the measured values of yi. The full covariance
matrix of the measurements z after combining the indi-
vidual variances is then given by:

Pzz =

⎡
⎢⎣

σ2
z1

0 0

0
. . . 0

0 0 σ2
zn

⎤
⎥⎦ (19)

The frequency components that we use as measure-
ments in the estimation procedure have to be carefully
selected based on the SNR. A too low SNR will result in
the fact that the original FFT measurement yi can not
be transformed reliably to a measurement zi with the
modeled additive Gaussian noise. The selection proce-
dure we use is defined as finding frequency components
f from the whole set of available components f total from
the FFT measurement, which have a high enough SNR
to participate as reliable measurements:

f =

{
fi : fi ∈ f total ∧

||yi||

σy

> SNRth

}
(20)

Also here, the selection is based on the actual measured
values of yi. The threshold SNRth can be set to a value
as low as 1.

Our parameter vector x consists of the attenuation
coefficients:

x = [a0, ar]
T (21)

The measurement vector will consist of the log magni-
tude measurements z and the linear relation between z

and x is given in vector notation by:

z = Hx (22)

with

H =

⎡
⎢⎢⎢⎣
−f1 −1
−f2 −1

...
...

−fn −1

⎤
⎥⎥⎥⎦ (23)

The resulting likelihood function is than given by the
multivariate Gaussian pdf:

p(z|x) =
1

|2πPzz|
e−

1

2
(z−Hx)T P−1

zz
(z−Hx) (24)

The parameters are now calculated by finding the max-
imum of the likelihood function. Finding the maximum
of a Gaussian probability density function comes down
to finding the minimum of the corresponding Maha-
lanobis distance:

xML = arg min
x

(z −Hx)T P−1
zz (z −Hx) (25)
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The minimization of this quadratic function can simply
be calculated by setting the gradient of the function to
zero, resulting in the linear system:

HT Pzz
−1Hx = HT Pzz

−1z (26)

which can be solved by inverting the linear system.
When a solution has been found to this minimization

problem, we can iteratively improve our solution. The
calculation of the covariance matrix Pzz and selection of
frequency components f can both be improved by using
predicted measurements based on a previous estimate
of the parameters, rather than the noisy measurements
themselves. Thus instead of using measurements ||yi|| in
the calculation of Pzz and the selection f we will use the

predicted measurements ||y
(k)
i || which can be calculated

from the estimated parameters at step k, x(k) as:

||y
(k)
i || = |Yw(fi)| exp

[
− x

(k)
1 fi − x

(k)
2

]
(27)

Using the more accurate predicted covariance matrix

P
(k)
zz and selection of frequency components f (k) we will

estimate a new parameter vector x(k+1). This process
will be repeated until the estimated parameter vector
converges. Conversion is determined by calculating the
norm of the difference between two subsequent itera-
tive solutions. When this difference is small enough:
||x(k+1) − x(k)|| < ε, the process is stopped and a final
solution is obtained.

3.4 Cramer-Rao Lower Bound

In terms of estimator efficiency, it is useful to look at the
Cramer-Rao lower bound (CRLB). This bound gives the
theoretically lowest possible variance for any unbiased
estimator. If we look at the FFT transformed measure-
ments, which have additive Gaussian noise on both the
real and imaginary parts, we can find an expression the
CRLB. To do so, the real and imaginary parts are ex-
plicitly formed. Both the real and imaginary parts are
a nonlinear function of the parameters of which we can
calculate Jacobian matrices. If we combine both Jaco-
bian matrices and know that the variance on the real
and imaginary parts was σ2

y for all frequency compo-
nents, the expression for the fisher information matrix
is given by[8]:

I =
JT J

σ2
y

(28)

where J is the combined Jacobian of the real and imag-
inary parts of the FFT measurements. The minimum
attainable covariance for any unbiased estimator is then
given by:

Pxx = I−1 = σ2
y(JT J)−1 (29)

4 Results

In order to compare the different ultrasound propaga-
tion estimators, we ran a set of Monte-Carlo simula-
tions with different propagation distances/attenuation
constants. As input signal, we used a Gaussian mod-
ulated pulse with a center frequency of 5 MHz and a
bandwidth of 1.5 MHz. The input signal is displayed
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Figure 1: Input signal and a propagated signal for a
highly attenuating medium (a0 = 0.6 Np/MHz)

in Fig. 1a and the magnitude of the FFT of the input
signal in Fig. 1b. To illustrate the effects of propagat-
ing an ultrasound signal through a highly attenuating
medium we also show a propagated signal in Fig. 1c
and the magnitude of its FFT in Fig. 1d. The prop-
agated signal clearly has a different shape and a much
lower amplitude than the input signal.

To simulate realistic ultrasound propagation media,
we use an attenuation coefficient of α0 = 0.1 Np/MHz
/cm and vary the propagation distance from 0.5 cm to
6 cm. A noise free propagated object signal is calcu-
lated for each of the simulated propagation distances.
A set of 60,000 noisy propagated signals per distance
were generated by adding zero mean Gaussian noise to
the noise free propagated signals. The amount of noise
was chosen to have a SNR of 100. This means that the
maximum amplitude of the input (or reference) signal
in the time domain divided by the standard deviation of
the noise in the time domain will be equal to 100. After
propagating the input signal through an attenuation ob-
ject of a certain distance, the SNR will drop and hence
the rmse will increase. Statistics (bias and variance) of
the estimators are then calculated from the set of 60,000
samples. The rmse was calculated from the estimated
bias and estimated variance:

rmse =
√

bias2 + variance (30)

The resulting rmse as a function of propagation distance
of each of the estimators is displayed in Fig. 2, together
with the CRLB.

5 Conclusion

We have developed a new estimator for estimating in-
tegrated ultrasound attenuation parameters from ultra-
sound transmission mode measurements. The estima-
tor performs equally well as the existing spectral shift
estimator and better than the existing least squares fit
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(a) Attenuation estimation results for a0. True values are given
by a0 = 10 · Distance (Np/MHz)
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(b) Reflection estimation results for ar. The true value is given
by ar = 0.36 (Np)

Figure 2: rmse values for all estimators on the
estimation of both attenuation and reflection

estimator. However, it does not have the limitations
that the spectral shift estimator has. These limitations
are the constraints that the input signal should have a
Gaussian magnitude distribution in the frequency do-
main and that the attenuation function should be a lin-
ear function of frequency. In our new estimator, dif-
ferent attenuation functions can be implemented in a
similar manner by just changing the value of y in the
measurement model and no assumption is made about
the frequency magnitude distribution.

Our estimator has a rmse which is still above the
minimum possible Cramer-Rao lower bound. Currently
we are working on a new estimator which is expected
to have a performance much closer to the Cramer-Rao
lower bound.
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