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El-Alia, DZ-16111 Alger, Algeria

rafik serhane@hotmail.com

Acoustics 08 Paris

10369



Abstract - The Rayleigh integral giving the impulse response for the acoustic velocity potential cannot always be determined 
analytically for all types of transducer apertures. The shape of the transducer surface and the spatial distribution of the 
excitation on its surface can complicate the calculation. This makes using numerical methods indispensable. One of these 
methods consists in discretizing the aperture surface in polygonal shape elements. 

Our work makes use of both methods of Jensen and Faure. In the former, the transducer surface is subdivided in 
triangles. The latter one uses additional virtual triangles one side of which is that of the physical element and its summit is the 
field point projection on the plane containing the considered physical element. Additionally, a rotation of the virtual triangle 
around the field point projection is performed. In this work, the orientations of those virtual triangles are considered according 
to Jensen method and their contributions to the impulse response are calculated according to the two situations described by 
Faure. The combination of the two methods is, then, generalized to the case of non planar complex surfaces such as concave 
phased arrays.  

1 Introduction 

The transmitting surface of an ultrasonic transducer can be 
considered as a set of point sources uniformly radiating in 
all directions. The radiated elementary wavelets propagate 
into the surrounding medium. At a point of this medium, 
the sound pressure field results from the superposition of 
the all these elementary contributions. 
 

2 Pressure radiated by a mono-element 
planar transducer 

The determination of the acoustic potential ),( tMΦ  is 
based on the calculation of the Rayleigh integral, which is 
the mathematical formulation of the Huyghens-Fresnel 
principle [1,2]; that is : 
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with .0MMR =  )(tδ  is the Dirac impulse, ∗  the temporal 
convolution product, c  propagation velocity of the 
ultrasonic wave in the considered medium and ),( 0 tMvn

 the 
particle vibration velocity normal to the radiating surface. 
In the piston mode, this velocity has a uniform distribution 
on the surface )( 0S . In this case, the vibration velocity 
depends only upon time ( ).(),( 0 tvtMv nn = ): The spatial 
impulse response for the acoustic potential ),( tMiΦ  is 
defined by: 
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This allows writing the acoustic potential at point M, which 
is referred by r , by using a temporal convolution 
operation; that is : 
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 As the acoustic pressure ),( tMp  and potential are related 
by : 
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where ρ  is the equilibrium density of the propagating 
medium. 
 

3 Method of discretizing the source 
surface 
The triangles method (Fig. 1) has been proposed by two 
authors. Jensen [4] calculates the response by considering 
three geometric sub-triangles according to the field point 
position, each constituted by one side of the considered 
physical triangular element and the opposite summit, which 
is the projection of the field point on the plane containing 
the element surface (Fig 2). To calculate the response of 
each geometric sub-triangle, he applies to the latter a 
rotation around the projection of the field point so that one 
of its ridges is supported by the Ox axis. By using this 
procedure, the response of a sub-element is given according 
to five possible situations. Faure [5] considers sub-triangles 
one summit of which is the projection of the field point. 
The impulse response is calculated according to two 
possible situations (Fig. 3). 
Our study makes use of both two methods. The orientations 
of the sub-triangles are considered by using the Jensen 
method and their contributions to the impulse responses for 
the potential are calculated according to the two situations 
considered by Faure (Fig. 3). Then the combination of the 
two methods is generalized to not planar complex surfaces. 
 
3.1 Description of the method 
 
One should first dispose of an analytic expression 
( ),( YXfZ = ), in the )(OXYZ  referential, of the geometric 
surface of the radiating aperture for which the impulse 
response is calculated. A mesh of the )(XY  plane, which 
can be regular or not, causes discrete values at distance Z. 
Each set of coordinates ),,( iii ZYX  represents a knot of the 
mesh net, that is point iA  , which is the summit of an 
elementary polygon. In our case, the mesh is triangular, 
which corresponds to the simplest polygonal shape. It is 
constituted of three neighbouring knots of the mesh 

),,(),,( CBAAAA kji =  (Fig 1). 

 
Fig.1: Geometry for the discretization method. 
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A so-called Delaunay triangularization function, which has 
been programmed under Matlab, furnishes directly the 
indices ),,( kji  of the three summits of each triangle lying 
on the surface. The spatial discretization interval is chosen 
sufficiently small so that the triangular element can be 
considered as planar. Each triangular element therefore 
defines a plane the normal to which is that of the triangle. 
As for planar surfaces, the impulse response for the 
acoustic potential is proportional to the angle subtended by 
the arc of circle, which is the intersection of the sphere of 
radius ctR =  and which is centered on the field point M , 
with the considered element (Fig.1). The intersection of the 
spherical wave front with the plane supporting this triangle 
is a circle of radius 222)( ztct −=σ  and centered in P.     
z is the distance between the field point M and its projection 
P on the plane of the considered element. The 
determination of z requires the prior knowledge of the 
equation of the plane containing the considered element. 
This equation has the following form : 
                                   .0=+++ δγβα ZYX                    (5) 
Let N(X,Y,Z) an arbitrary point of the plane containing the 
triangular element ABC. The coordinates of points A, B and 
C verify the equation (6) of the plane. This permits relating 
the constants γβα ,,  and δ to these coordinates by : 
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We deduce then the vector nr , which is normal to the plane 
of the element; that is: ( )γβα ,,nr . Point ),,( PPP ZYXP  is 
the projection of the field point ),,( MMM ZYXM  on this 

plane. P and M must verify nPM rξ=
→ , where ξ is a 

proportionality factor, therefore : 
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The coordinates of point P verify the plane equation to 
which it belongs : 

                .0=+++ δγβα PPP ZYX                              (8) 
If in addition, we take account of the equations system (7), 
we obtain the proportionality factor ξ : 

.222 γβα
δγβαξ

++
+++= MMM ZYX                     (9) 

By replacing ξ in the precedent system (7), the coordinates 
of P can be deduced. The distance PM=z is : 
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Let us consider the active triangular element ABC of this set 
(taken alone in Fig. 2). To calculate the impulse response of 
this element, we should consider the projection P of the 
field point as the origin of the new referential (Pxyz), so 
that the plane (x,y) be the element plane. Consequently, a 
change of the origin and of the axes orientation is 
performed. All the coordinates are then expressed in the 
new referential (Pxyz). 
To determine the impulse response for the acoustic 
potential of element ABC which is denoted by m, we should 
consider the three sub-triangles PAB, PAC and PBC (Fig.2). 
The response of the element is the sum of three responses, 
each with a contribution sign, according to the orientation 
of its corresponding sub-triangle; that is : 
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3max =k  and hik  is the impulse response of the thk  
triangular sub-element contributing to the physical element 
response with the sign .1±=ks  
For the signs of the sub-triangles contributions, three cases 
are possible. These are illustrated in Fig.2. If the projection 
P of the field point M is situated inside element ABC, then 
the signs of the contributions are all positive. If not, the 
observer which is placed in P sees the triangle ABC under 
angle Φ . The nearest sub-triangles formed by the sides of 
element ABC and P contribute with a negative sign ( PAB  
and PAC  (Fig 2.b) and PAC  (Fig 2.c)). All others have 
positive contributions.  
To mathematically determine if the projection P of the field 
point is situated on the radiating surface ABC or not, it is 
sufficient to draw a straight line from P that crosses one 
side of triangle ABC in .Q  It should necessarily cross an 

 
Fig. 2: Geometry for the determination of the sign of the sub-elements contribution 

to the impulse response of the triangular element. 
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other side in .R . The negative scalar product 
→→
PRPQ .  

signifies that point P  is inside the element and all other 
contributions are positive (Fig 2.a). If not, it is outside the 

element. In this second case, ( ).0. ≥
→→
PRPQ  If in addition 

PRPQ <  (Fig. 2.b et 2.c), then the sub-triangle formed by 
point P and the side going through R contributes with a 
positive sign. The other sub-triangle, formed by point P and 
the side containing ,Q  contributes with a negative sign. 
Otherwise ( PQPR < ), the sign of the sub-elements 
contributions is inverted. 
 
3.2 Sub-element and element responses 
 
The determination of the impulse response of a sub-element 
requires the calculation of the contribution angle ),( tMθ , so 
that: 
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=                       (12) 

Let us consider the sub-element PAB situated in referential 
(Pxyz) which is relative to element ABC (Fig 3). 

 
Fig. 3: Geometry for the determination of the sub-element 

impulse response. 
 

The equation of the straight line (AB) is given by [5] : 
.00 yxmy +=                                 (13) 

The constants 0m  and 0y  are function of A and B 
coordinates : 
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Let I be the projection of point P on the straight line (AB). 
Two cases can be distinguished: I belongs to segment [AB] 
or not, according to the position of P. We define, then, 1ρ  
as the distance between P and the straight line (AB); that is: 
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2ρ  and 3ρ  are the minimal and the maximal distance from 
A or B to P respectively : 

     
).,(max),(max

),,(min),(min
2222

3

2222
2

BBAA

BBAA

yxyxPBPA

yxyxPBPA

++==

++==

ρ

ρ      (16) 

The distances from the field point to the different positions 
of discontinuities with the sub-element sides are given by : 

,3,..,0    ,22 =+= izr ii ρ           with :    .00 =ρ  
The corresponding instants are: 

./ crii =τ                                        (17) 
The angles α  et 1α  represented in Fig.3 are given by : 
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The response of the thk  sub-element )31( ≤≤ k  is : 
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with 

.)( 222 ztct −=σ           (20) 
A summation on the three sub-triangles ( 3max =k ) of the 
considered ABC  element furnishes the impulse response of 
that element. 
This impulse response is represented in Fig. 4.a for 
different positions of the field point projection on the plane 
of the element. These projections are illustrated in Fig. 4.b. 
It should be noticed that, every time the spherical wave 
encounter an edge of the triangular element, the spatial 
impulse response shows an important variation at the 
corresponding instant. The number of these discontinuities 
depends on the field point position.  
The total impulse response of the transducer is obtained by 
summing the impulse responses of each elements; that is : 
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Fig 4 a) Impulse response for the velocity potential of a 

triangular element represented in b) for different positions 
of the field point on the x axis (y=0) and at plane z=30 mm 

 

The efficiency of this method for such geometries depends 
on its precision and the calculation time of the response. In 
order to reduce the error risk and to optimize the method, it 
is first tested in the case that an analytic expression of the 
impulse response is available. 
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4 Discretization method applied to a 
circular focusing transducer 
 
The surface of a circular focusing transducer is subdivided 
in a number N of triangular elements (Fig. 5) so that each 
element can be considered as planar and the mesh method 
previously described can be applied. 
Let us consider a circular focusing transducer of radius 

10=a  mm, of focal distance  50=F   mm and which is 
discretized in 5584 triangular elements. 
 

 
Fig. 5: Mesh of a circular focusing transducer. 

The spatial impulse response for the acoustic potential of 
this transducer though calculated at the field point of 
coordinates (x=1mm, y=0, z=20mm, relatively to the focus 
chosen as origin) shows an average error of 3.5 % relatively 
to the results given by the analytic method [6,7] (Fig 6). 
This relative difference between the impulse responses 
obtained by the two methods is given by :  

analytic)(
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ii
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φ
φφ

φ
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Fig.6 : Impulse responses calculated by the two methods for 

N= 5584 elements at x= 1 mm, z=20 mm. 
 

It can be noticed that the relative error is negligible in the 
time interval corresponding to the direct wave regime 
although the transmitting surface is curved. The relative 
error is maximal at the discontinuities instants of the 
impulse response.   

 

5 Generalization of the mesh method to 
a curved rectangular transducer 
(cylindrical) 
 

The application of the discretization method to surfaces for 
which an analytic expression of the impulse response is 
available has permitted testing its efficiency in order to be 
generalized to more complex geometry surfaces. 
A curved rectangular transducer of dimensions 
( 62 =a mm, 202 =b mm), of curvature radius 20=R mm 
(depth 68,2=e mm) is represented in Fig. 7. Such 
transducers are generally used as elements of a linear  

 
Fig. 7 : Curved rectangular transducer of dimensions 

(2a=6mm, 2b=20 mm) and curvature radius R=20 mm, 
discretized in 5000 triangular elements. 

 

transducers array in order to reduce the focus width along 
(Oy). 
In the focal plane (z=20 mm), the response is maximal for a 
field point the projection of which is situated on the 
radiating surface ( 3≤x  mm and y=0). These positions 
correspond to a segment describing the focal zone. In the 
same region, the pressure field (Fig 8.a) is composed of a 
direct wave component ("plane") followed by an edge wave 
component of lower amplitude. These two contributions 
interfere because of the excitation duration which is 
represented in Fig. (8.d). The direct wave component is 
proportional to the source acceleration. Far from the axis (at 

2=x  mm) and being on the segment of the straight line 
defining the focal zone, the edge wave component appears. 
Its destructive interference with the "plane "wave furnishes 
an amplitude lower than that obtained on axis ( 0=x ). At 
greater distances from the axis ( Oz ) (x 3≥  mm), the field 
point is no more in the focal zone and the  response for the 
potential becomes “flat”. Only the transducer edges 
contribute to the pressure field with two replicas of inverse 
polarities. The "plane" wave regime for which the response 
stay maximal and constant is obtained for ( ax <||  ). The 
pressure field is composed of a "plane" wave which has the 
form of the excitation (Fig 8.b) followed by two edge 
waves components. In the shadow zone ax ≥|(|  ), the 
pressure field is constituted of two edge waves components 
of very low amplitude, which become more time separated 
when x increases.  

 
Fig. 8 : Pressure radiated by a curved rectangular transducer 

for different positions x of the field point : a) in the focal 
plane (z = 20 mm), b) nearer than focal plane (z=10mm), c) 

farther than the focal plane (z = 30 mm) and  
d) Excitation waveform. 

Farther than the focus, the field point receives first the 
contributions of the nearest transducer edges. If the field 
point has a projection on the radiating surface ( 3|| ≤x  

N=5584 elements 
Average relative error = 3.5 % 

Φi/c  analytic 
 

Φi/c discretized

a) on the focal plane 

c) farther than the focal plane
c) nearer than  

the focal plane 
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mm), then, during a very short time interval, a "plane" wave 
regime appears (Fig 8.c). The "plane" wave component has 
an inverse polarity relatively to the excitation and is 
preceded by an edge wave of lower amplitude and of the 
same polarity as the excitation (Fig.8.c). 

 

Out of axis, the response for the acoustic potential has a 
monotone increasing regime then it decreases before it 
nullifies. The greater the radial distance x, the greater the 
duration of the decreasing regime is. In addition, only two 
edge wave components constitute the pressure field. 
 

6 Concave linear array 
 

The discretization method previously described can be 
generalized to calculate the field of a concave array.  

 
Fig. 9 : Linear concave array : N = 16 elements, 2a=1mm, 

2b=20 mm, d=1.2 mm and R=20 mm. 
 

The transducer represented in Fig. 9 figure is constituted of 
16 mono-elements of dimensions (2a=1 mm, 2b=20 mm) 
and which are aligned along the (Ox) axis. The distance 
between the centers of two successive elements is         
d=1.2 mm and the curvature radius is R=20 mm. 
The impulse responses for the acoustic potential of the 
elements for a simultaneous excitation of the elements are 
represented in Fig.10.  
A field point on the axis (x=0, y=0, z=20 mm) receives first 
the wavelets issued from the two central elements. The 
superposition of the responses of two symmetric elements 
furnishes a response of double amplitude and the responses 
of successive elements start at separated times. These 
results are comparable to those given by [8].  

Fig. 10 : Individual impulse responses for the acoustic 
potential of a concave array obtained                                  

by the discretization method 
 

7 Effect of the mesh elements number  
 

For 5000≥N  , the relative error becomes negligible and 
nearly constant (Fig. 11.a). The calculation time varies 
"linearly" with N (Fig 11.b). By limiting N around 2500, the 
calculation time stays reasonable (in the order of 35 s on an 
Intel Celerone 1GHz personal computer) and the relative 
error is acceptable (in the order of 3.5%). 

 
Fig. 11 : Effect of the number of mesh elements N  a) on the 
average relative error and, b) on the calculation time of the 

impulse response by using the discretization method. 
 

8 Conclusion 
 

The described method which uses triangles formed by the 
edges of the mesh elements can be generalized to any 
geometry of the mesh element. It is sufficient that this 
geometry is polygonal. In this case, the summation of the 
contributions of the triangular sub-elements above defined 
furnishes the impulse response of the element considered 
(Eq. 11), with kmax  being the number of sides constituting 
the elementary polygon. The efficiency of this method for 
such geometries depends upon its precision and the 
calculation time of the response. To reduce the error risk 
and optimise the method, the latter has been first tested in 
the case that an analytic expression of the impulse response 
is available. This combination has permitted to generalize 
the mesh method to any type of radiating surface. 
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