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Interferometric aperture synthesis is an inverse problem that attempts to form an elevation map of the
earth (in the case of radar) or a bathymetric map of the seafloor (in the case of sonar). In both cases, a
pair of transducers is configured as an interferometer. After aperture synthesis is performed to produce
a pair of images, the height of each resolvable scatterer can be estimated using time delay estimation
between the image pairs and knowledge of the system geometry.

While interferometric synthetic aperture sonar (InSAS) seems like an obvious extension of the methods
of interferometric synthetic aperture radar (InSAR), the height estimation algorithms are surprisingly
different. In this paper we start with the principle of generalised correlation for optimal time delay
estimation. This filters the signals to maximise their coherence since the accuracy of the time delay
estimates, and thus the height estimates, strongly depends upon the signal coherence. We then consider
the fundamental differences between InSAR and InSAS; namely the relative signal bandwidth, aperture
sampling rate, and geometry and show how application of generalised correlation time delay estimation
leads to the differences in how InSAS and InSAR signals are processed.

1 Introduction

Interferometric aperture synthesis is an inverse problem
that attempts to form an elevation map of the earth (in
the case of radar) or a bathymetric map of the seafloor
(in the case of sonar).

With single-pass interferometric synthetic aperture radar
(InSAR) a pair of antennas are configured as an inter-
ferometer, where one of the antennas (or a separate an-
tenna) is used to illuminate the scene (either from a
spaceborne or airborne platform). Alternatively, a sin-
gle transmitter/receiver pair is flown on a similar but
displaced track; a technique known as repeat pass inter-
ferometry. After pulse compression and synthetic aper-
ture reconstruction (taking care to preserve the phase)
two images are obtained d1(y, r) and d2(y, r), where y
is along-track position and r is slant range. The goal
of interferometric processing is to reconstruct a height
image z(x, y) where x denotes cross-track position.

In principle, interferometric synthetic aperture sonar
(InSAS) is similar to InSAR but with a towed or au-
tonomous sonar platform having a transducer (projec-
tor) to ensonify the seafloor and a pair of hydrophone
arrays to record the scattered echoes. The arrays of hy-
drophones are required to increase the along-track sam-
pling rate since the speed of sound propagation is many
orders of magnitude slower than electromagnetic prop-
agation. The echoes from each hydrophone array are
pulse compressed and combined using synthetic aper-
ture reconstruction algorithms to produce a pair of im-
ages. While InSAS height estimation seems like an ob-
vious equivalent to the more mature InSAR, the height
estimation algorithms are surprisingly different.

In this paper we start with a simple scattering model
and using this model consider the correlation coefficient
between the two signals. The height estimation problem
is then posed as an optimisation problem where both the
time delay and time scaling need to be considered. We
show that by ignoring the time scaling that the height
reconstruction problem is equivalent to time delay esti-
mation followed by a geometric mapping to infer height.
We then consider the principle of generalised correlation
for optimal time delay estimation. This filters the sig-
nals to maximise their coherence since the accuracy of
the time delay estimates, and thus the height estimates,
strongly depends upon the signal coherence. Finally,
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Figure 1: Exaggerated interferometer geometry for two
receivers labelled 1 and 2 with corresponding

footprints labelled 1′ and 2′, and grazing angles β1 and
β2. The interferometer baseline is d, the interferometer

tilt is ξ, and the local terrain slope is α.

we consider the fundamental differences between InSAR
and InSAS; namely the relative signal bandwidth, aper-
ture sampling rate, and geometry and show how appli-
cation of generalised correlation time delay estimation
leads to the differences in InSAS and InSAR processing.

2 Scattering model

Consider an interferometer shown in Figure 1 formed by
a pair of receivers located at (x1, z1) and (x2, z2) with a
transmitter at (xi, zi). The transducers are side-looking
in the +x direction so scattering from the −x direction
can be ignored. At a given instant t after a transmission,
the pulse-compressed echo signals can be modelled as
the superposition of the scatterers at a range ct/2. Thus,
ignoring trivial amplitude factors and approximating the
2-D scattering by a line integral [1], the baseband pulse-
compressed complex envelope signals scattered from a
nominally flat seafloor have the form:

dh(t) =
∫ ∞

−∞

1
rhri

a(x)p
(

t− rh + ri

c

)
(1)

× exp (−jk0 (rh + ri)) dx.
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This is a time-domain simplification of the Kirchhoff
scattering model where the subscript h denotes the re-
ceiver number, c is the speed of propagation, p(t) is
the baseband pulse-compressed signal, k0 = 2πf0/c is
the angular wavenumber of the centre frequency f0, ri

is the range from the source to a scattering point at
(x, z(x)), while rh is the range from the scattering point
to receiver h:

ri =
√

(x− xi)2 + (z − zi)2, (2)

rh =
√

(x− xh)2 + (z − zh)2. (3)

Assuming a quasi-monostatic geometry (with the trans-
mitter located near the receivers); that the grazing an-
gles βh are large so that the Kirchhoff approximation is
applicable [2]; that the projected pulse length is small
compared to the range so that the Fraunhofer approxi-
mation is valid; that the surface roughness is small com-
pared to the range resolution; that the local terrain tilt is
negligible (this can be modelled by a local coordinate ro-
tation); and ignoring beam pattern effects (these can be
modelled as a time-domain convolution since the change
in grazing angle over each footprint is small compared
to the broad vertical beam pattern), (1) becomes

dh(t) ≈ 4
(ct)2

exp
(
−j2πf0

(
t− x̄h

c
ηxh

))
(4)

×
∫ ∞

−∞
a(x) exp (jk0h(x)ηzh)

× p

(
x̄h − x

c
ηxh

)
exp (−jk0xηxh) dx.

Here h(x) denotes the local height variation, (x̄h, z̄h)
denotes the footprint centre for the hth receiver at each
instant t, β̄h = β̄h(t) are the scattered grazing angles
for each footprint,

cos β̄h =
x̄h − xh

rhh
, (5)

β̄ih = β̄ih(t) are the incident grazing angles,

cos β̄ih =
x̄h − xi

rih
, (6)

and ηxh = ηxh(t) and ηzh = ηzh(t) are the wavenumber
scaling factors given by

ηxh = cos β̄ih + cos β̄h, (7)
ηzh = sin β̄ih + sin β̄h. (8)

Despite the many approximations in the derivation (4),
it is worth noting that for a given time t after pulse
transmission, the echo signals have been scattered from
slightly different regions (or footprints), a phenomenon
known as the footprint shift. In addition, due to the dif-
ference in grazing angle, the footprint sizes (the length
of the projections of p(t)) are also slightly different.

3 Correlation coefficient

A common measure of the similarity between two signals
is the correlation coefficient. The correlation coefficient

at each instant t as a function of delay τ between the
signals is given by

ρ12(t, τ) = E [d2(t)d∗1(t− τ)]√
E

[
|d1(t− τ)|2

]
E

[
|d2(t)|2

] . (9)

Assuming that the scatterers are uncorrelated and uni-
formly distributed, then the correlation coefficient for a
small delay τ can be expressed as

ρ12(t, τ) = exp (jΦ(t))M

(
f0

c
(ηx1 − ηx2) , τ

)
, (10)

where Φ(t) is the interferometric phase given by

Φ(t) = exp (jk0 (x̄1ηx1 − x̄2ηx2)) , (11)

and M = M(fx, τ), where

M =
Fx

{
p

(
x̄2−x

c ηx2

)
p∗

(
x̄1−x

c ηx1 − τ
)}√∫∞

−∞

∣∣p (
x̄2−x

c ηx2

)∣∣2 dx
∫∞
−∞

∣∣p (
x̄1−x

c ηx1

)∣∣2 dx
.

(12)
Here Fx {.} denotes a Fourier transform over x evaluated
at spatial frequencies fx.

Equation (10) shows that to maximise the correlation
coefficient, the footprint shift x̄1 − x̄2 needs to be com-
pensated (except for the scattering point on the inter-
ferometer axis where the footprint shift is zero). It also
shows that the correlation is never perfect due to the
slight difference in look angle resulting in ηx1 6= ηx2.
This slight scaling of the footprints results in baseline
decorrelation. For example, if the compressed pulse has
the form p(t) = rect (t/Tp) then the maximum correla-
tion can be approximated by [1]

max {ρ12} (t) ≈ exp
(
−jk0

D

2
sin

(
β̄ − ξ

))
(13)

× sinc
(

f0TpD

H
sin β̄ tan

(
β̄ + α

)
cos

(
β̄ − ξ

))
,

where ξ is the tilt of the interferometer axis, D = d/2 is
the distance between the interferometer phase centres,
H is altitude of the interferometer, and β̄ is the mean
grazing angle. This expression describes the baseline
decorrelation assuming registration of the two signals so
that the footprints overlap [3, 4] (i.e., when τ is chosen
so that the interferometer axis is steered to point at
the common footprint). Note, in the radar literature
it is more common to model the compressed pulse as a
sinc function so that the sinc in (13) is replaced with a
triangular function [5–7].

A difference (see Table 1) between InSAS and InSAR
(especially spaceborne InSAR) is the grazing angle β̄
(measured from the horizontal). InSAS is commonly de-
ployed in shallow waters (such as harbours) and thus the
grazing angles are small, typically 5–30 degrees, where
the Kirchhoff approximation is poor [8]. Airborne In-
SAR uses a similar geometry but for spaceborne InSAR
the grazing angles are steeper, typically 30–60 degrees
and thus the decorrelation is greater. Another key dif-
ference is that the relative bandwidth of InSAS systems
is much greater than InSAR (apart from a few VHF air-
borne systems such as CARABAS [9]). This results from
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InSAR InSAS

(space) (air)

Propagation speed fast fast slow

Incidence angle small large large

Relative bandwidth small small large

Noise receiver receiver environment

Footprint shift small small significant

Wavenumber shift significant significant insignificant

Table 1: Key differences between InSAR and InSAS.
The footprint shift is compared to the range resolution

while the wavenumber shift is compared to the
wavenumber bandwidth.

the desire of high range resolution given the slow speed
of acoustic signals in water, the availability of broad-
band transducers, and no restrictions on usage of the
underwater acoustic spectrum. Indeed, it is not uncom-
mon to have a sonar with an octave bandwidth; thus the
product f0Tp is much smaller for InSAS than InSAR.
However, this has little effect on the baseline decorre-
lation since the baseline D is chosen to minimise base-
line decorrelation. The disadvantage of a large relative
bandwidth is that accurate co-registration is required
to reduce decorrelation due to the footprint shift. To
see this, let’s assume that the look angles are equal so
ηx1 = ηx2 = ηx and thus there is no baseline decorre-
lation. The resulting correlation coefficient due to the
footprint shift is

ρ12(t, τ) = exp (jΦ(t))M (0, τ) , (14)

where

M(0, τ) =

∫∞
−∞ p

(
x̄2−x

c ηx

)
p∗

(
x̄1−x

c ηx − τ
)
dx∫∞

−∞

∣∣p (
x
c ηx

)∣∣2 dx
. (15)

4 Height estimation

Interferometric height estimation is a super-resolution
technique that makes the assumption that there is only
a single dominant scattering patch for each slant range
(thus multipath and layover are assumed negligible). Es-
sentially the task is to estimate the terrain height z
that maximises the correlation coefficient between the
echo signals. For each height guess z at a slant range
r = ct/2 the footprint centres x̄h, grazing angles βh,
and wavenumber scale factors ηxh can be determined.
The echo signals can then be time scaled, shifted, and
correlated using

ρ12(t, τ, η) = E [d2(ηt)d∗1(t− τ)]√
E

[
|d1(t− τ)|2

]
E

[
|d2(ηt)|2

] , (16)

where η = ηx1/ηx2. The height estimate ẑ, is the height
guess that maximises the correlation coefficient. This
can be expressed as a search:

ẑ(t) = arg max
z

|ρ12(t, τ(z), η(z))| . (17)

Since this is computationally expensive, a simpler ap-
proach is to ignore the time scaling (or to make a correc-
tion based on the expected height) and to just estimate

the time delay between the two signals that maximises
the correlation coefficient:

τ̂(t) = arg max
τ

|ρ12(t, τ)| , (18)

= arg max
τ

|E [d∗1(t)d2(t− τ)]|√
E

[
|d1(t)|2

]
E

[
|d2(t− τ)|2

] , (19)

where E [.] is the expectation operator. The delay esti-
mate is then converted to a height estimate through a
geometric mapping.

Equation (19) requires averaging over an ensemble of in-
dependent echoes. While a number of along-track sam-
ples can be averaged, this degrades the along-track res-
olution. Additional averaging can be obtained at the
expense of range resolution by assuming that the sig-
nals are ergodic and performing a time-correlation over
an observation time T :

τ̂(t) = arg max
τ

∣∣∣∫∞−∞ u2(t, t′)u∗1(t, t
′ − τ)dt′

∣∣∣√∫∞
−∞ |u2(t, t′)|2 dt′

∫∞
−∞ |u1(t, t′)|2 dt′

,

(20)
where

uh(t, t′) = dh(t + t′) rect
(

t′

T

)
. (21)

The correlation can be performed in the frequency do-
main using

τ̂(t) = arg max
τ

∣∣∣∫∞−∞ U2(t, f)U∗
1 (t, f) exp (j2πfτ) df

∣∣∣√∫∞
−∞ |U2(t, f)|2 df

∫∞
−∞ |U1(t, f)|2 df

,

(22)
where

Uh(t, f) =
∫ ∞

−∞
uh(t, t′) exp (−j2πft′) dt′. (23)

Time delay estimation theory shows that the variance
of the time delay estimate about the true delay can be
reduced using generalised correlation [10]. Here each
signal is filtered by a filter response Wh(f) (or equiv-
alently one of the signals can be filtered by W (f) =
W1(f)W2(f)) to minimise the variance of the time de-
lay estimates. The optimal filter response to minimise
the variance is [11]

W (f) =
|γ12(f)|2

|S12(f)|
[
1− |γ12(f)|2

] , (24)

where S12(f) is the cross power spectral density between
u1 and u2, and γ12(f) is the cross spectral coherence:

γ12(f) =
S12(f)√

S1(f)S2(f)
, (25)

≈ E [U2(f)U∗
1 (f)]√

E
[
|U1(f)|2

]
E

[
|U2(f)|2

] . (26)

Here S1(f) and S2(f) are the power spectral densities
of u1 and u2. Note if both channels have uncorrelated
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additive noise with the same power spectrum Snn(f),
the cross spectral coherence becomes

γ12(f) =
S12(f)√

(S1(f) + Snn(f)) (S2(f) + Snn(f))
. (27)

Assuming a rough scattering surface with stationary
statistics, the power spectral density of the pulse com-
pressed echoes are proportional to the energy spectral
density of the compressed pulse signal p(t) weighted by
the beam patterns and the footprint response. Since the
vertical beam patterns are wide to span a broad swath,
the slight difference in look angle results in minimal dif-
ference in beam pattern response. The difference in look
angle does, however, result in a small variation in the
footprint response, known as the wavenumber shift [12].
The wavenumber shift is a narrowband approximation
of the scaling of the scattered wavenumber spectrum.
This results in a temporal frequency shift ∆f between
equivalent features in the echo power spectra, given by

∆f ≈ −fD

H
sin β̄ tan

(
β̄ + α

)
cos

(
β̄ − ξ

)
, (28)

where α is the local terrain tilt for the footprint of in-
terest. The wavenumber prefiltering [12] suggested to
reduce the InSAR phase variance is essentially a form
of generalised correlation. However, since the frequency
shift is so small (otherwise the baseline decorrelation
would be unacceptably large), wavenumber prefiltering
is only useful for narrowband InSAR. It is more im-
portant for a broadband InSAS system to compensate
for the wavenumber scaling. Care is required with the
interpolation so that the small gain is not lost by inter-
polation noise during the time scaling.

Using the spectral weighting given by (24), the Cramér-
Rao lower bound (CRLB) for the time delay variance is
given by [11]

στ ≥

[
T

∫ ∞

−∞
(2πf)2

|γ12(f)|2

1− |γ12(f)|2
df

]−1/2

. (29)

This shows that the greater the signal bandwidth (and
thus the broader γ12(f)), and the longer the observa-
tion time T , the smaller the variance of the delay σ2

τ

(and thus the depth) estimates. However, the longer
the observation time T (the extent of the correlation
window), the lower the time (and thus range) resolu-
tion. Thus there is a tradeoff between resolution and
the variance of the bathymetry estimates. This trans-
lates to a trade-off between across-track resolution and
height accuracy.

InSAR systems are primarily narrowband and thus the
CRLB of the estimated time delay using the signal phase
is almost identical to the CRLB obtained using a time
domain correlation. Thus the time delay can be esti-
mated from the phase of the Hermitian product of the
complex baseband signals. While the footprint shift is
not significant for narrowband signals, it should be min-
imised by co-registering the signals before phase estima-
tion. However, this requires an initial estimate of the
terrain height or an initial delay estimate.

Estimating the phase has a computational advantage
since it avoids computing the correlation and a search

for the correlation peak. The disadvantage is that the
time delay estimate is ambiguous since the phase can
only be estimated modulo 2π and thus phase unwrap-
ping techniques are required to reduce the ambiguity.
The unambiguous time delay interval can be extended
using a lower frequency (but with a degradation in ac-
curacy) or by employing additional receivers (multiple
baseline) [13]. It can also be extended by increasing the
signal bandwidth [14]. Once the signal bandwidth is
comparable with half the centre frequency, ambiguities
can be avoided and phase unwrapping is unnecessary.

The time delay estimates can be improved by combin-
ing multiple estimates. As mentioned before, the vari-
ance of the estimate of τ is reduced by averaging the
time correlations over neighbouring along-track posi-
tions, although this reduces the along-track resolution.
This is equivalent to a maximum likelihood phase fil-
ter [15] when the signals are narrowband or accurately
co-registered to compensate for the footprint shift [16].
Since electromagnetic propagation is so much faster than
acoustic propagation, InSAR systems are better sam-
pled in the along-track direction than InSAS. Thus it
is common for InSAR to average over more along-track
looks than InSAS and conversely for InSAS to average
over more range samples than InSAR.

When there are more than two receivers the time delay
estimate can be further improved by averaging the sig-
nal correlations, inversely weighted by the expected vari-
ances [17]. An interferometer with additional receivers
also allows additional arrival angles to be estimated for
each slant-range and thus can be used to mitigate the
effects of layover [18] and multipath [19].

The CRLB of the time delay estimate using correlation
depends on the the second moment of the normalised
echo energy density spectrum:

β2
0 =

∫∞
0

f2 |P (f)|2 df∫∞
0
|P (f)|2 df

. (30)

This is related to the rms signal bandwidth β and centre
frequency f0 through the identity [20]:

β2
0 = β2 + f2

0 . (31)

So if we define the signal quality factor (Q) as the ratio
of the centre frequency to rms bandwidth,

Q =
f0

β
(32)

then the second moment can be expressed in terms of
the centre frequency and Q:

β0 = f0

√
1 +

1
Q2

. (33)

Thus for narrowband systems with Q >> 1 then β0 ≈ f0

and hence there is little improvement performing a cor-
relation over narrowband phase estimation (using the
phase of the Hermitian product of the echo signal com-
plex envelopes). This assumes that the SNR is suffi-
ciently high so that the phase does not wrap. The dis-
advantage of narrowband phase estimation is that the
delay estimate is ambiguous and phase unwrapping is
required to reduce the ambiguities.
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With InSAS it is common to correlate the complex en-
velopes of the echo signals rather than the real signals.
This is more computationally efficient but the delay es-
timate using the correlation envelope is poor (the CRLB
is inversely proportional to β instead of β0). The esti-
mate can be improved using the phase at the correlation
peak [21]; the resulting CRLB of the delay estimate is
inversely proportional to f0. This is close to optimal
for narrowband systems but for broadband systems with
low Q the echo signals should be correlated after remod-
ulating the complex envelopes to the centre frequency.

5 Conclusions

The key difference between InSAR and InSAS is the rel-
ative bandwidth. As a result, the narrowband InSAR
algorithms are not applicable unless the InSAS signals
are sub-banded and treated as a number of a narrow-
band estimates. A small improvement in the correlation
coefficient can be obtained using generalised correlation,
where the signals are filtered to maximise the coherence
at each frequency. A slightly higher correlation coeffi-
cient can be obtained by time scaling one of the two
signals (equivalent to remapping the slant range data
to a common ground plane and thus compensating for
the wavenumber spectrum scaling). However, unless a
search is performed, this requires an estimate of the ter-
rain height.
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