Problems in sound quality evaluation in Brazil: general or cultural ones?

Stephan Paula and Samir Gergesb

aLab. of Vibrations and Acoustics, Fed. Univ. of Santa Catarina, CTC, EMC, Campus Trindade, 88040 Florianópolis, Brazil

bFederal University of Santa Catarina (UFSC), Campus Universitario - Trindade, 88040-900 Florianopolis, Brazil

stephan.paul.acoustic@gmail.com
Within modern sound engineering the individual perception of sound events has to be considered. In the area of sound and vibration research procedures and instruments have been developed worldwide, but the latter ones are subject to several restrictions, especially in relation to their language. In order to carry out sound evaluations in Brazil adequate evaluation procedures and especially instruments are required. This article is intended to discuss some of the problems encountered by the authors when developing assessment procedures and especially instruments for evaluation of sound quality with Brazilian subjects. In particular, the work undertaken to study descriptors for sound and the associated problems will be outlines and discussed.

1 Introduction

Listening experiences with subjects sampled from a population are indispensable tools in sound quality assessment. The vast majority of approaches to assess sound quality by means of listening experiences use methods borrowed from psychology and sociology, usually psychometric ones. Acoustic community assessment tools including rating scales, semantic differentials, paired comparisons and others are commonly used. Nevertheless, these tools are highly dependent on linguistic, methodological and cultural issues and they can not be readily translated and used cross-culturally.

In the course of several projects related to sound quality issues in Brazil the author, as well as his colleagues in Brazil, have faced several problems. Some of them are of a more general nature but others seem to be particularly related to Brazilian language and culture. These problems will be discussed in this article, which is intended mainly to report difficulties found, to open a discussion on these issues, to solicit feedback and to advise other researchers.

2 Adaptation of psychometric instruments from other studies

The adaptation of psychometric instruments from studies in other languages seems to be a suitable way to make use of the large number of psychometric instruments available, to take advantage of the knowledge related to them and to facilitate the comparison of results with the results from other studies. One important adaptation required to turn any psychometric instrument into one suitable for the assessment of sound and sound quality, considering the target population, concerns the linguistic and semantic elements which all such instruments rely on to communicate different aspects of the procedure to the individual. Within sound related investigations psychometric instruments are sometimes simply translated from one language to another and used cross-culturally.

On several occasions the possibility of such an adaptation procedure for all the different elements of a psychometric instrument has been analyzed. Extremely careful translation and adaptation of the concept names (e.g. comfort to conforto in Brazilian Portuguese) used in a psychometric instrument developed in other languages and with other subjects seemed to be reasonably adequate [21], but problems also appeared at the very beginning.

As an example we take Quehl’s semantic differential for aircraft interior noise and vibration [27]. According to Quehl [27], aircraft interior noise and vibration is an attribute of comfort within German speaking subjects. In a pilot study with Brazilian subjects we confirmed this point of view [6]. Thus, we studied the adaptation of Quehl’s semantic differential to Brazilian Portuguese, but already in the initial stages problems arose. Quehl studied comfort in aircraft as understood by German speaking subjects. Her semantic differential was developed in German and requires the evaluation of “Flugzeuginnengeräusche” (aircraft interior noise). It is generally accepted that the meaning of comfort differs, often significantly between cultural groups. Also, there is no true equivalent of the German root term “Geräusche” to English or to Brazilian Portuguese. This term describes any sound that is audible, is not used necessarily to transmit information and has neither a positive nor negative association [23, 7]. Thus, we were likely to investigate a slightly different concept, at least in Brazil, by asking the subject to evaluate ruido dentro da aeronave (noise in the aircraft) or som dentro da aeronave (sound in the aircraft), inducing a positive or negative rating tendency, as the connotation of som is mainly positive and the connotation of ruido is usually negative. This rating tendency was confirmed when asking for the adequacy of descriptors for aircraft interior noise using a rating scale. Either due to the meaning of the term ruido (noise) or due to the general relation to aircraft interior noise subjects rated negative descriptors much more suitable than positive. The term som is also very likely to be misinterpreted, because naïve subjects, but also some texts related to Brazilian noise policies, relate it to music and stereo systems [24] and less to the physical phenomena.

Further problems are likely to arise with the instructions and items when trying the translation approach. Sometimes the items, before or even after translation, do not apply to the cultural circumstances of the target population (e.g. [5]) or can not, or can only broadly, be translated. The latter occurs often with items used in English or German psychometric instruments for sound and sound quality evaluation, because these languages offer more simple descriptors for sound than Romance languages, for instance Brazilian Portuguese. In several studies on Brazilian Portuguese descriptors for sound in general and vehicle and aircraft sounds in particular it has been observed that these differences are even greater considering spoken Brazilian Portuguese (e.g. [24, 28]). In some cases, such as in the example given in the next

\(^{1}\)The original semantic differential was obtained by personal communication with Mrs. Julia Quehl.

\(^{2}\)The same is true for other languages like French, Spanish or Italian.
section, the meaning of a term may change completely, even when the closest translation equivalent is given from the point of view of a translator.

It should be noted that translations of items must be carried out (e.g. [19, 4, 15]), especially to English, in the case of scientific publications. Nevertheless, several authors (e.g. [30, 21]), point out that translation, even to languages with similar cultural background, is sensitive to errors and the semantic stability and validity of the instrument is very likely to be lost. This situation is even worse in the case of successive translation, translating the psychometric instrument already translated to English again to another language for use. Therefore, an approach based on translation and adaptation seems not to be appropriate when cultural questions play an important role. For example, evaluations of tone composition in music, when connotational, are likely to include cultural aspects and therefore to differ. Also, large semantic differences can exist, as is the case between Romance languages (e.g. French, Spanish, and Portuguese) and Germanic languages (e.g. English and German).

3 Problems with descriptors

The items, e.g. adjectives and adjective pairs, used in rating scales as verbal endpoints or in semantic differentials, pose another difficulty. They are usually derived from attributes related to the concept, for instance aircraft interior noise and vibration, and are often essentially characteristics of the concept that one may use to describe it. Brazilian Portuguese poses then the difficulty that (1) in general only a small number of precise descriptors for acoustical phenomena is available, especially in spoken Brazilian Portuguese [17, 24], (2) many terms are ambiguous, (3) some terms change their significance when being translated, and (4) many descriptors are not generally understood by naive people.

Ambiguous terms include alto-baixo (high-low) or abafado-não abafado (≈ muffled-not muffled) that apply to both volume and frequency. A term that is very likely to be misinterpreted on translation is the term ‘rough’, which according to Helmholtz [31] refers to a hearing sensation evoked by modulated sounds, for instance by the German spoken letter ‘R’4 which is strongly modulated. Nevertheless, Brazilian subjects do not relate modulated sounds with aspero at all, this being the translation of rough, but agree that totally unmodulated noises such as white noise are aspero. This is contrary to the concept idealized by Helmholtz and considered by others.

3A similar observation about the limitations of the verbal space related to sound come from French scientists concerning French speaking subjects and urban sounds in France. Guastavino et al. [13, 12] and Dubois [8] report that adequate description of sounds using lexical terms in French, apart from those adopted by experts, are very hard to find. They state that it is much easier to find verbal descriptors for visual items and observed the use of complex syntactic structures in description of source events. Also, for British subjects Osborne Clarke [20] report that the proportion of simple one word descriptions for complex phrases was found to be low.

4That is why Helmholtz called this hearing sensation “rauigkeit” (roughness).
language does not have many adjectives for sound description or these are not naturally used. According to our experience, this is the case for Brazilian Portuguese, and according to Guastavino et al. [13, 12] and Dubois [8] it is also the case for French.

In the elicitation sessions it was found that the verbal discrimination abilities of acousticians not working with sound perception are not necessarily better than those of naive subjects, and even the acousticians reported difficulties involved in finding adequate descriptors for sound.

After the elicitation of descriptors, which usually results in a larger list, the experimenter must define the items to be used in the preliminary instrument. One approach to defining the descriptors for a certain type of sound is their selection from a list of previously found or defined descriptors [3]. This approach is well suited for the construction of the preliminary instrument, but the suitability rating depends on the experience of the subject with the concept under investigation and the presence or not of sound. In a study on aircraft interior noise, subjects sampled from different cities in Brazil and from the naive population as well as acoustics students, were asked to evaluate the adequacy of unipolar descriptors in this way, and considered negative descriptors, such as noisy, unpleasant, etc., to be much better suited than positive descriptors, such as silent, pleasant etc. This poses difficulties when one attempts to find descriptors that could form pairs to be integrated into a semantic differential, because the output of the evaluation task did not provide the information expected. When asking for the adequacy of previously defined pairs the experimenter must consider that it will remain unclear how the rating of a pair is obtained when one pole is considered to be adequate but the other pole is not. In both cases, evaluating single descriptors or pairs, the output is likely to be biased by several factors, e.g. the social desirability bias. It can also be noted that presentation of the respective sounds in an appropriate environment is of fundamental importance and can affect the output to an important degree.

4 Problems with rating scales

The construction of rating scales with discrete verbal labels for Brazilian Portuguese is difficult because the metric properties of verbal labels in Brazilian Portuguese are still unknown, especially regarding rating scales for sound phenomena. Günther et al. [11] announced an exploratory study on verbal qualifiers in Brazilian Portuguese for the Brazilian Version of the ICBEN noise annoyance scale, but at present these qualifiers are still not validated. Additionally the validation procedure will consider a noise annoyance scale, and the output will be, at least strictly speaking, valid only for a noise annoyance scale, but not for other scales like a preference scale. In cases where the metric properties are unknown several authors recommend that arbitrary labels are not used, but left blank (e.g. [14, 10]).

It has been proven in explorative interviews that rating scales, particularly numbered ones, are difficult for the inexperienced, untrained subjects to use successfully, although they provide relative ease of data processing for the experimenter. This was also confirmed in other studies, e.g. [22, 23, 16, 26], as they do not allow the subjects to express their impressions in an easy and natural way.

It is said that subjects would rather describe the object using linguistic expressions. Unfortunately the possibilities for the description of sound and vibration by simple one word descriptions in Brazilian Portuguese, as well as other Latin languages (see e.g. [9, 13, 12]), seem to be relatively limited, as experienced in several studies in which the author participated, as described earlier in this article.

5 Conclusions

This article discusses some problems encountered when working with sound quality evaluation in Brazil. Some of the problems related in this article are of a more general nature whilst others are particularly related to Brazilian Portuguese, such as problems of limited semantic space regarding the description of sound phenomena. It must be concluded that acoustics-related research in Brazil still has a long way to go in order to provide reliable tools for the assessment of sound, sound quality and sound related annoyance. The main aim of this article is to describe the problems encountered and give some orientation for future research.

Acknowledgements

I am very grateful to my colleagues Ricardo P. Leite and Raquel Bitencourt for many helpful discussion on the topic.

References

Acoustics 08 Paris

2007. [Article in Portuguese].

Luiz de Andrade, and Samir N.Y. Gerges. Relevância
dos aspectos vibro-acústicos no conforto
no interior de aeronaves. In Anais do XXI Encon-
tro da Sociedade Brasileira de Acústica - SOBRAC,
2006.

[7] DIN. 1320 Akustik: Begriffe. German technical

Case of Categories in Olfaction And Audition. Cog-

[9] Danièle Dubois, Catherine Guastavino, and Manon
Rainbault. A cognitive approach to urban sound-
scapes: Using verbal data to access everyday
life auditory categories. Acustica Acta Acustica,

Flindell, R.F.S. Job, S. Kurra, P. Lercher, M. Va-
let, T. Yano, and etal. Standardized general-
purpose noise reaction questions for community
noise surveys: research and a recommendation. Journal
of Sound and Vibration, 242(4):641–679,

[11] Hartmut Günther, Fabio Iglesias, and Ju-
liana Moraes de Sousa. Note on the development of
a brazilian version of a noise annoyance scale. Jour-

[12] C. Guastavino, B. Katz, J.D. Polack, D. Levitin,
and D. Dubois. Ecological Validity of Soundscape
2005.

[13] Catherine Guastavino. Étude sémantique et acous-
tique de la perception des basses fréquences dans
l’environnement sonore urbain. PhD thesis, Univer-

[14] Rainer Gusk. Psychological Methods For Evalu-
ating Sound Quality And Assessing Acoustic Informa-

of interior car sound with a new specific semantic
differential design. In Proc. of ASA-EAA-DAGA-

[16] J.F. Huber, J. Hüsler, M.D. Zunftine, G. Rufflin,
and M. Lüscher. [visual circle scale (vcs) - a patient-
friendly scale to measure pain compared to vas
and likert scale.]. Z Orthop Unfall, 145(6):795–797,
2007.

[17] Fabiano Reikdal Lima. Capacitação técnica. Tech-

Relating multilingual semantic scales to a common
timbre space. In Proc. of 113th Convention of the
Audio Engineering Society, Los Angeles, USA,
October 2002. AES.

[19] Uwe Müller and Martin Schütte. Sound engineering
for aircraft (sefa), first results of listening examina-
tions. In Proc. of the 2006 Congress and Exposition
on Noise Control Engineering Internoise, 2006.

[20] D.J. Oborne and M.J. Clarke. The development of
questionnaire surveys for the investigation of pas-

[21] Charles E. Osgood. The cross-cultural generality
of visual-verbal synesthetic tendencies. Behavioral

[22] Norm Otto, Scott Amman, Chris Eaton, and Scott
Lake. Guidelines for Jury Evaluations of Auto-
motive Sounds. Journal of Sound and Vibration, pages
1–14, April 2001.

[23] Stephan Paul. Subjektive Beurteilung von
Fahrzeugeräuschen - Qualitative Verfahren im
Fahrzeugsimulator und im realem Fahrzeug. Master’s
thesis, Technische Universität Berlin, Berlin, Ger-
many, June 2004.

[24] Stephan Paul. A first exploration of auditory de-
scriptors for Brazilian Portuguese. In Proc. of the
2005 Congress and Exposition on Noise Control
Engineering Internoise. Braz. Soc. of Acoustics SO-
BRAC, 2005.

[25] Stephan Paul, Fernanda Higashi de Vasconcelos,
and Thiago R.L. Zmijevski. Developing a comput-
erized interface for sound quality evaluation. In

voz e violão – uma abordagem comparativa de diferen-
entes métodos de simulação. Acústica & Vibrações,

[27] Julia Quehl. Comfort Studies on Aircraft Interior
Sound and Vibration. PhD thesis, University of

[28] Yuri Adson Ribeiro, Ricardo Penna Leite, Raquel
Fava de Bitencourt, Thiago Rodrigo Lóss
Zmijevski, and Samir N. Y. Gerges. Uma abor-
dagem do ruído de janelas elétricas através dos
conceitos e técnicas da qualidade sonora. In XXI
Encontro da Sociedade Brasileira de Acústica e I
Simpósio de Acústica de Salas, Edificações e Es-
colas, page 9, São Paulo, Brasil, Novembro 2006.
Sociedade Brasileira de Acústica - SOBRAC.

[29] Francis Rumsey. Subjective assessment of the spa-
tial attributes of reproduced sound. In Proc. of
AES 15th International Conference, pages 122–135.
AES, 1998.

[30] Brigitte Schulte-Fortkamp. The evaluation pro-
cess of sound and vibration - integrating interdisci-
plinary concepts. Noise Control Engineering Jour-

[31] H. von Helmholtz. Die Lehre von den Tonempfind-
ungen als physiologische Grundlage für die Theorie
der Musik. F. Vieweg and Sohn, 1870.