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Vibrating strings are known to be nonlinear. Transverse vibrations induce axial motion as well as a modulation
of the string's tension. An overview of the nonlinear models of the vibrating string has been presented at the
150th Meeting of the ASA. It has been shown that if temporal considerations are prevalent from an acoustical
point of view, the involved coupling mechanisms are mainly ruled by the spatial shape of the modes.
The purpose of this communication is to investigate the specific case of transverse-axial interactions and to
examine the possible generation of axial modes through transverse vibrations. It also gives the opportunity to
discuss the common hypotheses.
Despite the complex modal couplings that can occur, this results enable to avoid or favor axial modes in the
design of the string itself or of the boundary conditions i.e. the bridge.

1 Introduction

In the classical problem of the vibrating string, intrinsic
nonlinearities play a major role and still are a subject of
considerable interest in the litterature. Since the seminal
paper of Carrier [1], a lot of models have been proposed, the
more general seeming due to the author [2] who had the
opportunity to present and discuss the various models and
underlying hypotheses in [3].

The equations of motion lead to intricate couplings and a
lot of particular situations have been studied, mostly in a
single transverse mode case and formerly with a mainly
temporal point of view.

The axial equation of motion appears to have the form of an
inhomogeneous linear wave equation driven by the
transverse motion, and on which we will focuse in this
communication.

For some applications, such as musical acoustics where the
design of the bridge can take advantage of axial motion, it
is valuable to clearly understand the underlying
mechanisms of axial modes generation. Else, if as usually,
axial motion is not the most relevant issue, it indirectly
affects the transverse motion.

After having derived the equation and defined what an axial
mode is, as well as insisted on the distinction with
longitudinal motion, we will discuss the case of uniform
extension, responsible for the octave stretch, and derive the
corresponding solution in a more consistent way than usual
[4].

Finally, the true nature of axial modes generation will be
explained. It will be shown that it is mainly ruled by the
spatial shape of the modes. The understanding of the
involved mechanisms enables to avoid or favor axial
modes.

2 Kinematics

We consider a string stretched at rest between its ends at
z = 0 and z = Lo. A point of initial coordinates (0, 0, z) in
a three-dimensional orthonormal Cartesian coordinate
system is displaced to (x (z, t), y (z, t), z + u  (z, t)) as
shown in Fig.1.

As well as x and y designate the transverse displacements,
it should be pointed out that u describes an axial motion
(displacements parallel to the string's axis z at rest), not to
be confused with the longitudinal waves, tangent at any
instant to the deformed shape of the string and characterized
by the local extension a (z, t).

Superimposed dots will denote derivations with respect to
time t and primes derivations with respect to z.

Fig.1 Kinematics.

The actual length ds of an elementary portion of the string
of length dz at rest is given by

(1)

and the unit vector tangent to the string writes

(2)

3 The axial equation of motion

3.1 Exact equation of motion

For  a perfectly flexible string of lineic mass density at rest
µo (= !o A, where !o is the volumic mass density, for an
homogeneous cylindrical rod), the exact equation for free
motion writes

(3)

where

(4)

is the local actual tension.

Projection of Eq.(3) on the z axis, gives:

(5)

3.2 Elastic behaviour

Assuming the string to be linearly elastic in the vicinity of
the prestressed state with tension To (> 0) at rest, the value
of the local actual tension takes the form

(6)
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where K is a constant (for an homogeneous cylindrical rod,
K = E A, where E is the tangent Young's modulus and A
the area of the cross sections).

3.3 The approximate axial
equation of motion

Retaining only terms of the order of a, Eq.(5) becomes

(7)

where

     and     (8)

are the axial and transverse wave velocities in the ideal
string case.

The well known Eq.(7) [2] appears to have the form of a
linear wave equation forced by the transverse motion.

This forcing only disappears in the particular situation
where cL  = cT , corresponding to a tension–length
proportionnality, in which case Eq.(3) reduces to the linear
string equation, whatever the amplitude may be [5].

In practice

(9)

3.4 Form of the solution

For fixed ends (u (0) = u (Lo) = 0), the axial motion can
always be written under the form

(10)

with

(11)

and

(12)

Each term in the sum of Eq.(10), with Eqs.(11) and (12),
defines an axial mode.

4 On the transverse modes

4.1 Approximate transverse modes

For pinned ends, the transverse motion can be written
under the same form as Eq.(10) but with non harmonic
temporal parts. Nevertheless, the fundamental frequency "m
of the m-th transverse mode is slightly greater than that of
the ideal linear case

(13)

the detuning being due to the increase of the mean tension
resulting from the string's extension during the motion.
The neglected higher order components are corrections of
very small amplitudes with respect to those of the
fundamentals.
Moreover, the transverse equations of motion lead to
awkward couplings [3], but we can suppose that their

amplitudes slowly change with time and finally assume for
x and y temporal parts of the form of Eq.(11).

4.2 On the flexural and torsional
stiffnesses

We have derived the axial equation of motion in its
simplest way. Consideration of flexural and torsional
stiffnesses only affects the transverse equations of motion
and is of poor interest here [2]. The most important indirect
influence is that flexural stiffness leads to another slight
increase of the transverse modes frequencies.

5 Uniform extension

A transverse vibration implies a modulated increase of the
actual string length given by

(14)

where we have considered a constant distance between the
ends:

(15)

Eqs.(1) and (7)  gives the local extension

(16)

Assuming that Rel.(9) holds, one can consider that the
present frequencies are too low to excite longitudinal waves
and that the extension a is thus uniform along the string,
which writes

(17)

The extension being directly related with the tension by
Eq.(6), this leads to what is called the octave stretch at
twice the frequencies of the transverse modes [4]. This
phenomenon can be exhibited in the Raman experiment
where an end of the string is attached to the center a
perpendicular plate driven by the string's tension.

The corresponding axial displacements, given by Eq.(1) or
Eq.(16) with a' = 0, are

(18)

with

(19)

which is not zero, accordingly to an oscillatory motion.

The method followed here is more consistent than the
classical one [4, 6] where cT is neglected with respect to cL
and assuming that transverse frequencies are too low to
excite axial modes, uunif is calculated from Eq.(7) in the
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quasi-static case (ü  = 0). It gives the same result as
Eq.(18), but such an a posteriori procedure which only
holds in the limiting case  increases the non-
linearity of the transverse equations of motion and can be
incompatible with the orders of magnitude of the terms
retained in the transverse and axial equations of motion.

Moreover, the resulting axial motion do not correspond to
axial modes since the spatial and temporal parts, imposed
by the transverse motion, are not related to the same axial
wave number (see also [7] where the first axial mode
appears only because initially present).

6 Generation of axial modes

6.1 Necessary condition

Injecting solutions of the form of Eq.(10) for the transverse
and axial displacements in the equation of motion Eq.(7),
and following a Galerkin procedure yields the system of
axial modal equations [3]

 (20)

for each n, and where # is the Kronecker symbol.

The right hand side exhibits selecting rules concerning the
ranks of the modes, i.e. their spatial distributions, which
are necessary conditions to excite axial modes. Thus, the
n-th axial mode is excited if and only if are present two
different transverse modes, of ranks i and j and same
polarization, such that for i $ j:

(21)

or one transverse mode such that:

(22)

6.2 Efficiency condition

We see in Eq.(20) that, without loss of generality, we can
only consider transverse modes in one polarization.
Substitution of the approximate form discussed in § 4
yields

  (23)

and the n-th axial mode is forced at the frequencies present
in the right hand side which must be near %n. It appears
immediately that conditions (9) and (22) cannot be satisfied
together so that axial modes generation cannot occur in a
single mode transverse vibration [8].

Rel.(9) with Eq.(21) show that an efficient excitation of the
n-th axial mode can take place if

     and     (24a, b)

As an example, for a given string, it is quite easy to
generate the first axial mode with two consecutive

transverse modes verifying Rel.(24b), and to avoid this
excitation by suppressing one of them (for example by
plucking the string at one of its nodes).

Eq.(23) shows that, if excited at its natural frequency, the
axial mode's amplitude will grow linearly.

These conditions explain the experimental results obtained
by Cuesta and Valette [6, 9].

6.3 Remarks

This investigation is useful for the transient part of the
vibration. Once an axial mode is present, it will itself
interact with transverse modes and modify the actual
situation, leading to a more complex motion.

7 Conclusion

The purpose of this communication was to study the axial
motion in a vibrating string. The classical result in the case
of an uniform extension was obtained in a rigorous way and
the axial modes generation mechanisms, obeying simple
selecting rules based on the spatial modes shapes. This
gives a tool to avoid or favor axial modes.
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