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Road traffic noise is a major environmental problem. The interaction between tyre and road surface, the
major noise source, is highly non-linear and is therefore best described in the time domain. The currently
used contact models used for tyre/road noise have problems with either accuracy or calculation speed.
At the Structural Dynamics and Acoustics group of the University of Twente an alternative contact
algorithm has been developed. One characteristic feature of this algorithm is that, while solving the set
of equations, the contact condition, i.e. the condition stating that there is no contact between the bodies,
is satisfied exactly. Hence, there is no need for contact elements or contact parameters. The major
advantage of the new approach is the possibility to speed up the algorithm, using the multigrid method.
In this paper the contact algorithm is applied to a two-dimensional finite element model. Coulomb friction
is taken into account. Some test simulations illustrate the algorithm.

1 Introduction

In modern society, traffic noise has become an impor-
tant issue for mental health. A significant contributor
to this noise pollution is tyre/road noise, which is caused
by the interaction between tyre and road surface. The
noise generating mechanisms have been identified, al-
though there is discussion on the relative importance of
these mechanisms. From experiments, it is known that
spectra of tyre/road noise display a peak in the range
of 500–2000 Hz [8]. Hence, tyre/road noise is a high
frequency problem.

In order to predict and reduce tyre/road noise, differ-
ent mathematical and empirical noise predicting models
have been developed during the last decades. The main
similarity between the mathematical models is that they
can be separated in a tyre vibration model and a sound
radiation model. Sound radiation has been modelled an-
alytically by equivalent sources and numerically, by use
of (in)finite elements or boundary elements. The tyre vi-
bration models range from analytical models, where the
tyre vibrations are modelled by means of a ring [1], shell
[9] or plate [5], to numerical models based on finite ele-
ments. The finite element-based models use approxima-
tions in circumferential direction by e.g. an implemen-
tation of the Arbitrary Lagrangian Eulerian approach
[6, 2] or by the use of waveguide finite elements [7]. The
influence of a realistic tread profile cannot be modelled
because of these approximations. Therefore, a full three
dimensional model of the tyre has to be made. The cur-
rent tyre models in the finite element package Abaqus
are advanced, i.e. it is possible to analyze treaded tyres.
However, the calculation times are large, since the cal-
culation of high frequencies requires a fine mesh.

The currently used contact models used for tyre/road
noise have problems with either accuracy or calculation
speed. At the Structural Dynamics and Acoustics group
of the University of Twente an alternative contact algo-
rithm has been developed. A characteristic feature of
this algorithm is that, while solving the set op equations,
the contact condition, i.e. the condition that there is no
overlap between the bodies, is satisfied exactly. Hence,
there is no need for contact elements, contact parame-
ters, Lagrange multipliers, or regularization. The major
advantage of the new approach is the possibility to use
multigrid methods to speed up the algorithm. In the
field of elasto-hydrodynamic lubrication, multigrid and
multilevel techniques have been used extensively to solve
contact problems fast [11, 12]. Moreover, the proposed
contact algorithm is stable and robust.

The new contact algorithm has been successfully ap-
plied in a finite difference formulation, where the tyre
was modelled as a flexible ring [13]. In this paper, the
contact algorithm is applied in a finite element model.
The numerical model and the contact algorithm are ex-
plained in the next section; numerical experiments are
presented afterwards.

2 Numerical model

The tyre is modelled using a Lagrangian approach, which
can easily be replaced by an updated Lagrangian ap-
proach in order to be able to apply large rotations and
deformations in a more advanced model [10]. In this
section the finite element model, the contact model and
the contact algorithm are discussed.

2.1 Finite element model

The equation of motion reads

∇ · σ + b = ρü, (1)

where σ is the symmetric Cauchy stress tensor, ρ the
density, b the body forces and ü the acceleration. Con-
stitutive equations are needed to couple the Cauchy
stress tensor and the density to the kinematics of the
deformation. After integration over an arbitrary volume
V , introduction of weight functions w and application
of the divergence theorem of Gauss, the weak form of
this equation is

∫

V

w ·ρüdV +

∫

V

∇w : σ dV =

∫

V

w ·bdV +

∫

S

w ·tdS,

(2)
where t = σ ·n is the traction vector, n the outward unit
normal vector and S the boundary surface. The equilib-
rium problem is now discretized by dividing the domain
in a number of elements. For the contact algorithm it
is preferable to use linear shape functions. Following
the Galerkin approach, the weight functions are chosen
equal to the shape functions. Then, the equation of mo-
tion can be written as a system of coupled, second order
differential equations in time

Mü + Cu̇ + Ku = fext, (3)

where M is mass matrix, C the damping matrix, K

the stiffness matrix, u the nodal displacement vector,
and fext = ft + fb the external force vector, the sum of
the nodal body forces and nodal traction forces (see the
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righthand side of Eq (2)). Eq (3) can be solved in time
when sufficient boundary conditions are applied. The
fact that a tyre cannot penetrate the road surface, is
an example of a boundary condition for the tyre. This
contact behaviour is described by the contact model in
the next section.

2.2 Contact model

Contact for finite elements is frequently studied in liter-
ature. For an overview the reader is referred to e.g. [4].
The traction vector t working on the surface can be split
in a normal component tN and tangential component tT

according to

t = σ · n = tN + tT = tNn + tT , (4)

where n is the outward unit normal vector. Note that
the traction is part of the external load vector in Eq (3).

2.2.1 Contact condition

The contact condition is a constraint equation, speci-
fying that the tyre cannot penetrate the road surface.
Hence, a gap function, i.e. the distance between the tyre
and the road, g can be defined according to

g ≥ 0. (5)

where g is the perpendicular distance between a node of
the tyre and the contact surface. For nodes in contact
g = 0. Moreover there is assumed to be no adhesion
between the two surfaces in contact, i.e. the contact
forces can only be negative

tN = t · n ≤ 0, (6)

where tN is the normal component of the traction vector
t and n denotes the outward unit normal vector.

2.2.2 Friction model

When the tyre is in contact with the road, the fric-
tion model determines whether the tyre sticks or slips.
Coulomb’s friction law states that the tangential trac-
tion is limited by the normal traction according to

|tT | ≤ µ|tN |, (7)

where µ is the friction coefficient. Nodes that fulfill
Eq (7), stick to the surface and when t ≥ µtN slip oc-
curs. For frictionless contact, µ = 0.

The interaction between tyre and road surface is in-
herently non-linear, and has to be solved in the time
domain. The time domain is discretized and the used
contact algorithm describes how Eq (3) is solved for ev-
ery time step.

2.2.3 Contact algorithm

In each time step, the contact algorithm uses relaxation
to calculate an update for each node individually. The
applied algorithm has some similarities with the one
used by Wu & Du [14], where nodal displacements are
used as well. The working of the contact algorithm can
best be explained by the flowchart as given in Fig 1.

in contact

calculate

tN > 0t = 0
update

g < 0 g = 0 |tT ||tT |

node i
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=

correct
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Figure 1: Flowchart of the contact algorithm.

For simplicity, the calculation steps in the algorithm are
given for the static case. Consider an arbitrary node i,
the algorithm first checks if the node is in contact. For
nodes in contact a nodal force fi is calculated which is
required to keep the node at that position, according to

fi = Kiu, (8)

where Ki is the rectangular nodal stiffness matrix. The
length of fi equals the number of dimensions. The total
external force consists of a body and traction compo-
nent. The algorithm checks if the normal component of
the traction tN is negative. In case the traction tN is
positive (tensile), the node is released and the traction t

is set to zero; the node is out of contact. Note that this
not necessarily means that fi is zero, since body forces
can be present. The displacement of the nodes out of
contact is updated using Gauss-Seidel relaxation

ûi = ũi +
1

det(Kii)
(fi − Kiũ) , (9)

where ûi is the updated displacement vector of node
i, ũi the original displacement vector of node i, fi the
nodal external force vector and Kii the square nodal
stiffness matrix which is the nodal part of Ki. When a
node has been displaced to a point below the surface, the
node is in contact and put back on the surface (g = 0).
Nodes in contact are considered to stick on the surface
a priori. In order to check this assumption the nodes
in contact are subjected to Eq (7). If the tangential
traction is too high, the friction force is maximal (|tT | ≤
µ|tN |). The node slips along the surface (g = 0) and the
displacement is corrected. In the next step, node i+1 is
considered and the process continues until convergence
has reached for all nodes.
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2.3 Time integration

In the previous section, the static case is considered. For
dynamic simulations a discretation in the time domain is
necessary. Under appropriate contact conditions, Eq (3)
is solved in time by a Newmark integration scheme. This
implicit second order scheme is commonly used in finite
element calculations, because of its consistency, stabil-
ity and accuracy. In a dynamic calculation the contact
algorithm calculates an update for the displacement in
the new time step (un+1). The acceleration and the
speed at step n+1 follow from the previous time step n
as

ün+1 =
1

β∆t2

(

un+1 − un − ∆t u̇n

)

−

(

1

2β
− 1

)

ün, (10)

u̇n+1 =
γ

β∆t

(

un+1 − un

)

−

(

γ

β
− 1

)

u̇n

−∆t

(

γ

2β
− 1

)

ün, (11)

where ∆t is the time step, γ = 1

2
and β = 1

4
for uncondi-

tional stability. After the substitution of these relations
in Eq (3) and application of the initial conditions, u̇n+1

and ün+1 can be solved for each time step.

3 Results

To illustrate the working of the contact algorithm, a
two-dimensional finite element model is built. Two nu-
merical experiments will be presented in this section, i.e.
a Hertzian contact and a bouncing ring. In the examples
linear elastic material behaviour is considered.

3.1 Hertzian contact

To test the accuracy of numerical contact a non-trivial
test is required for which the analytical solution is avail-
able, such as a Hertzian contact [3]. The Hertzian con-
tact formulas describe the contact pressure distribution
between two cylinders (line contact) or between two
spheres (point contact).

The contact pressure distribution between two cylin-
ders is given by the following analytical description:

p = p0

√

1 − ξ2, (12)

where p0 is the maximum pressure, ξ = x/a the normal-
ized coordinate, x the Cartesian coordinate along the
contact, and a the semi-contact width. The maximum
pressure is given by

p0 =

√

PE∗

πR
, (13)

where P is the normal load per unit length, E∗ the ef-
fective Young’s modulus and R the effective radius. The
semi-contact width is given by the relation

a =

√

4PR

πE∗
. (14)
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Figure 2: Stress distribution (N/mm) in the deformed
mesh.

The effective Young’s modulus is defined as

E∗ ≡

(

1 − ν2
1

E1

+
1 − ν2

2

E2

)

−1

, (15)

where E1 and E2 denote the Young’s moduli for the
two cylinders and ν1 and ν2 the Poisson’s ratios. The
effective radius is defined as

R ≡ (1/R1 + 1/R2)
−1

, (16)

where R1 and R2 are the radii of the individual cylin-
ders. For an elastic cylinder (1) on a flat rigid surface
(2), Eqs (15) and (16) reduce to

E∗ = lim
E2→∞

(

1 − ν2
1

E1

+
1 − ν2

2

E2

)

−1

=
E1

1 − ν2
1

, (17)

R = lim
R2→∞

(1/R1 + 1/R2)
−1

= R1. (18)

A numerical simulation is performed with the subse-
quent parameters: radius R = 10 mm, Young’s modulus
E = 210 · 103 MPa, Poisson’s ratio 0.3, a normal load
per unit length P = 1.0 · 104 N/mm. From Eqs (13)
and (14) an analytical solution can be derived: maxi-
mum pressure p0 = 8571 N/mm and semi-contact width
a = 0.7428 mm.

The lower half of the cylinder is modelled with bi-
linear quadrilaterals and compressed on a rigid surface.
The deformed mesh, together with the normal stress dis-
tribution, is given in Fig 2. The numerically and analyt-
ically derived contact pressure distribution is depicted in
Fig 3. The numerical simulations show a good approxi-
mation of the Hertzian contact, with p0 = 8555 N/mm
and 0.73 < a < 0.80 mm (a = 0.75 mm after interpo-
lation). After mesh refinement, the numerical solution
converges to the analytical solution. It can be concluded
that the contact algorithm is able to predict normal con-
tact pressures in frictionless contact correctly.

3.2 Bouncing ring

To validate the contact algorithm in dynamic cases, a
fictive elastic ring is dropped on a rigid surface, as de-
picted in Fig 4. The ring has an outer radius of 0.5 m
and an inner radius of 0.3 m. At the initial time step
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Figure 3: Pressure distribution (N/mm) in the contact
patch, analytical (—) and numerical solution (⋄).

(t = 0 s), point A is located 0.2 m above the surface
and the ring is at rest. The other parameters are chosen
in accordance with a low eigenfrequency: Young’s mod-
ulus E = 200 Pa, Poisson’s ratio ν = 0.3, the density
ρ = 1.0 kg/m3, friction coefficient µ = 1.0 and gravi-
tational constant g0 = 9.81 m/s2. These settings result
in a first eigenfrequency pair (bending mode) around
3.53 Hz. The time step (∆t = 0.05 s) is chosen to atten-
uate the high frequencies. In Fig 4 the first interaction
between the ring and the surface is shown, which oc-
curs between 0.2 and 0.21 s and satisfies the analytical
solution (0.202 s). After 0.53 s the ring releases from
the surface and will bounce again. Although the dy-
namic results look promising, experimental validation is
needed and in progress.

4 Conclusions

The new contact algorithm, in which the contact condi-
tion is satisfied exactly, is applied in a two-dimensional
finite element formulation. The algorithm is robust and
stable and converges to the correct solution, without
the use of contact elements or contact parameters. The
major advantage of the new approach is the possibil-
ity to speed up the algorithm by using multigrid. The
application of multigrid within the finite element for-
mulation is necessary because of the large calculation
times at high frequencies. The description of friction
contact behaviour is validated by numerical simulations
of a Hertzian contact. The application is not limited
to static cases only, since the algorithm is successfully
applied in a dynamic simulation. In the future, multi-
grid will be coupled to finite elements and anisotropic
material behaviour will be added. The final goal is to
compute the vibrations and radiated noise pattern of a
profiled tyre rolling on a road.
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Figure 4: Bouncing ring on a rigid surface at different time steps
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