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The present study deals with the sound wave propagation in fractional dimensional porous media. Using
the Stillinger-Palmer-Stavrinou formalism, we establish the generalized Biot’s wave equations for sound
waves propagating in saturated porous media. As an application we study the wave equations and their
solutions in a porous media having anisotropic factional dimensions.

1 Introduction

Fractional dimension of space is now a well accepted
tool to describe effective parameters of physical systems.
The most famous exemple of fractional dimension is met
in fractal geometry. A fractal is a quantity which dis-
plays self similarity on all scales. In physics, behind this
word, we understand object or phenomena which cannot
be decribed by smooth functions. One of the fascinating
interest of fractals is their capability to model objects
with complicated structures. This is due to an impor-
tant property of the fractals objects that their structure
is characterized by a small number of parameters. One
of them is the fractal dimension which tells how the frac-
tal is confined in the Euclidean space or how it fills the
space in which it lies.
Very early, fractal concept has been incorporated in the
study of porous media [1] to investigate various phe-
nomena as flows in porous media pores and fractures.
When a fluid moves in a porous medium, what happens
in a part of the fluid is affected by the motion of the
other parts. This fact in particularly salient in a fractal
medium where the hierarchy of scales needs new equa-
tions of motion.
In [2] a formalism is developed by Stillinger to construct
a generalized Laplacian operator which is convenient for
its extension to non integer dimensional spaces. For a
2-spatial coordinates space, the Stillinger’s formalism
shows that it is possible to distribute the D dimensions
between them. More recently, Palmer and Stavrinou
generalized the results of Stillinger to n orthogonal co-
ordinates [3]. One conclusion of their investigation is
that this formalism allows to describe an anisotropic
confinement of a fractal medium, i.e. different degres
of confinement can be associated to each orthogonal di-
rection. They also derive the equation of motion in a
non integer dimensional space.
The paper is organized as follows. In section 2 the Still-
inger’s formalism and the Palmer and Stavrinou deriva-
tion are briefly summarized. Section 3 is devoted to the
Lagrangian formulation of the acoustical waves propa-
gation in porous media leading to the Biot’s equations.
Lastly, in section 4, we derive the Biot’s wave equations
which occure in a fractional dimensional space.

2 Integration in spaces with non-

integer dimension

In his paper [2] Stillinger developped a formalism which
allows to write the Laplace operator in spaces having
a fractional dimension D. What means a fractional di-
mensional space? A such notion is defined from the in-
tegal calculus as follows. Let us consider the integration
of a radially symmetric function f , in a D-dimension

space
∫

dx0 f(r(x0,x1)) =

∫ ∞

0

dr υ1(r) f(r) (1)

where r(x0,x1) is the distance between points x0 and
x1. Here,

υ1(r) = σ (D) rD−1 (2)

and

σ (D) =
2πD/2

Γ (D/2)
. (3)

When D is an integer, σ (D) agrees with the volume of
the unit sphere in Euclidean spaces. This justifies the
generalization of fractional dimension to any value of D.
With this formalism, Stillinger shows that the Laplace
operator in a D-dimensional space is

∇
2f(r) = f

′′

(r) +
D − 1

r
f

′

(r) (4)

For a non integer D-dimensional space, the Stillinger’s
formalism leads to a Laplace operator for which the non
integer dimension is located only in one direction. For
example, in a space where only the dimension of the p
coordinate is integer, the Laplacian becomes :

∇
2f(p, l) =

[

∂2

∂p2
+

∂2

∂l2
+

D − 2

l

∂

∂l

]

f(p, l) (5)

3 Euler Lagrange equations in

noninteger dimension

C. Palmer and P.N. Stavrinou[2], have generalised the
Stillinger’s formalism of noninteger dimensionnal spaces
to n orthogonal coordinates. In this framework, and us-
ing the variational principle, they derive the Euler La-
grange equations of a field theory in such spaces which
follow from the stationnarity property of the action in-
tegral with respect to variations of the fields and their
derivatives. So, if the action is defined by

S =

∫

Ldvdt, (6)

where L = L(φk, ∂µφk) is the Lagrangian density corre-
sponding to a definite point of the space-time, the Euler-
Lagrange equations are:

∂L (φi, ∂µφi)

∂φi
− ∂µ

∂L (φi, ∂µφi)

∂ (∂µφi)

− (dµν − δµν)
(

x(−1)
)ν ∂L (φi, ∂µφi)

∂ (∂µφi)
= 0. (7)

Here, i = 1, 2, . . . , n is the number of degrees of freedom
(i.e. scalar fields), the index µ runs from 1 to 4, xµ =
(x1, x2, x3, x4 = t) and ∂µφi = ∂φi/∂xµ. d is a diagonal
matrix, the elements of which are the time and spatial
dimensions d = diag(1, d11, d22...dnn) with D = Tr(d)−
1 and δ is the diagonal unit matrix. The third term of
the left hand side of (7) is the additional terme due to
the fractional dimension. In an Euclidean space where
dµν = δµν this term vanishes.
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4 Lagrangian formulation of waves

propagation in porous media

Several models have been worked out to describe the
acoustical wave propagation in fluid saturated porous
media. Among them, the Biot’s theory [4] is the most
popular one. It takes into account the solid and fluid
motions and their couplings throught different processes.
In [5], Johnson has established the most general La-
grangian density of the acoustical field in a porous medi-
um leading to linear wave equations. In his formulation,
the interacting fields are the fluid (Uf ) and solid (Us)
dispalcements Uf,s(r, t) averaged within a representa-
tive elementary volume V ∼ l3 such that l is small com-
pared to the relevant wavelength λ but large compared
to the typical size of the pores a: a ≪ l ≪ λ. To derive
linear equations of motion (i.e. wave equations), the La-
grangian density L must contain terms up to the first or-
der in fields derivatives. Furthermore, for homogeneous
and isotropic systems, L is a scalar quantity with no de-
pendance on position and time. The only contributions
to the Lagrangian density are the scalars defined from
the space and time derivatives of displacemnts Uf,s(r, t).
So, the most general Lagrangian density for homege-
neous and isotropic systems involving two components
has the following form:

L =
1

2

{

ρ11 U̇
s 2

+ 2ρ12

(

U̇
s
· U̇

f
)

+ ρ22 U̇
f 2

−

[

α1

(

−→
∇ ·U

s
)2

+ 2α2

(

−→
∇ ·U

s
)(

−→
∇ · U

f
)

+α3

(

−→
∇ ·U

f
)2

+ α4

(

−→
∇ × U

s
)2

+2α5

(

−→
∇ × U

s
) (

−→
∇ × U

f
)

+ α6

(

−→
∇ × U

f
)2

]}

. (8)

In this equation, the kinetic energy is the sum of terms
which contain times derivatives, while the remaining
terms form the potential energy. The sets ρij and αi

are the phenomenological parameters to be determined;
they are related respectively to the densities of fluid and
solid and to their elastic modulus.

5 Biot wave equations in a frac-

tional dimensional space

Since the fluid filling the pores space of the porous medium
does not experience any shear restoring force, nor does
it contribute to one on the solid, we postulate that α5 =
α6 = 0. In this case, when applied to the Lagrangian
density (8), the generalized Euler-Lagrange equations
(7) give the following coupled wave equations :

ρ11Ü
s + ρ12Ü

f = α1
−→
∇

(

−→
∇ ·U

s
)

+ α2
−→
∇

(

−→
∇ · U

f
)

−α4
−→
∇ ×

(

−→
∇ × U

s
)

+ α1∆

(

−→
∇ · U

s
)

+α2∆

(

−→
∇ ·U

f
)

− α4∆ ×

(

−→
∇ × U

s
)

(9)

and

ρ22Ü
f + ρ12Ü

s = α3
−→
∇

(

−→
∇ ·U

f
)

+ α2
−→
∇

(

−→
∇ · U

s
)

+α2∆

(

−→
∇ · U

s
)

+ α3∆

(

−→
∇ · U

f
)

. (10)

where

∆ =





d11−1
x

d22−1
x

d33−1
x



 (11)

is the term of fractionnal dimensions.
In the following we study the propagation in a 2-coordi-
nates anisotropic porous medium saturated by a fluid.
The fractional dimension d11 is associated with the coor-
dinate x, while the dimension attached to y coordinate
is d22 = 1. Roughly speaking, the medium looks like
those presented on Fig 1. Then, the vector of noninte-
ger dimensions becomes

∆ =





d11−1
x
0
0



 (12)

Figure 1: Shema of noninteger dimensional direction
along ox axis

5.1 Longitudinal waves

As in the case of elastic solid, the dilatational waves are
obtained by using scalar displacements potentials. Such
waves disturb the medium by producing actual motion
along the direction in which they travel. So, we consider
acoustical waves which propagate along the ox axis, i.e.

such that U
s = us

xex and U
f = uf

xex. In this case, (9)
and (10) become

ρ11ü
s
x + ρ12ü

f
x = α1∂xxus

x + α2∂xxuf
x

+
d11 − 1

x

(

α1∂xus
x + α2∂xuf

x

)

(13)

and

ρ12ü
s
x + ρ22ü

f
x = α3∂xxuf

x + α2∂xxus
x

+
d11 − 1

x

(

α2∂xus
x + α3∂xuf

x

)

. (14)

For a monochromatic time dependence, ui(x, t) = ui
x(x)·

ejωt, these equations can be written in matrix notation
as :

ω2MΦ + I∂xxΦ +
d11 − 1

x
I∂xΦ = 0 (15)
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where Φ =

(

us
x

uf
x

)

, I is a diagonal unit matrix and M

is given by

M =

(

α1 α2

α2 α3

)−1 (

ρ11 ρ12

ρ12 ρ22

)

. (16)

.
The eigenvalues and eigenvectors of M give the longitu-
dinal modes of propagation corresponding respectively
to the fast (index F ) and slow (index S) waves. For that
we seek solution as Φ = xaΨ. Writting P−1Ψ = Υ =
(

υF

υS

)

, we get two uncoupled equations which are re-

spectively a fast compression and a slow compression
wave equations.

∂xxυF +

(

1

x

)

∂xυF +

(

−Λ2

x2
+ ω2D

+

)

υF = 0 (17)

∂xxυS +

(

1

x

)

∂xυS +

(

−Λ2

x2
+ ω2D

−

)

υS = 0 (18)

with Λ = 1
2 (d11 − 2).

With the new variables, z = ω
√

D±x where D± are the
eigenvalues do the matrix M , these equations become
Bessel equations :

∂zzυF,S +

(

1

z

)

∂zυF,S +

(

1 −
Λ2

z2

)

υF,S = 0 (19)

So, the solutions of equations 19 are Bessel’s functions,
υF (x) = JF

Λ (x) and υS(x) = JS
Λ (x) . For fractional

values of dxx, Λ is non integer and the general solution
of (17) and (18) are :

us
x(x, t) =

(

x1−
d11
2

)

{(

λF JF
Λ (x) + µF JF

−Λ(x)
)

−
(

λSJS
Λ (x) + µSJS

−Λ(x)
)}

ejωt (20)

and

uf
x(x, t) =

(

x1−
d11
2

)

{

p21

(

λSJS
Λ (x) + µSJS

−Λ(x)
)

−p22

(

λF JF
Λ (x) + µF JF

−Λ(x)
)}

ejωt (21)

where p21 and p22 are related to the eigenvectors of the
matrix M , and λF,S and µF,S are constants to be deter-
mined from initial conditions.

5.2 Shear waves

The components of displacements produced by shear
waves are U

s = us
yey and U

f = uf
yey Equations of

motion are then :

ρ11ü
s
y + ρ12ü

f
y = α4∂xxus

y + d11−1
x

(

α4∂xus
y

)

(22)

ρ12ü
s
y + ρ22ü

f
y = 0 (23)

For a monochromatic time dependence, ui(x, t) = ui
y(x)ejωt,

(23) is a simple relation between the amplitudes of mo-
tions of the two phases of the porous medium :

uf
y = −

ρ12

ρ22
us

y. (24)

The meaning of this relation is that, because of the tor-
tuosity of the porous medium, the fluid is dragged by
the solid during its motion.

Substitution of 24 in equation 21, leads to:

∂xxus
y +

d11 − 1

x

(

∂xus
y

)

+
ω2

α4

(

ρ11 −
ρ2
12

ρ22

)

us
y = 0. (25)

If we put us
y(x) = xaus

y the change of variable z =

ωx

√

1
α4

(

ρ11 −
ρ2
12

ρ22

)

, leads to the Bessel’s equation :

∂zzu
s
y +

(

1

z

)

∂zu
s
y +

(

1 −
Λ2

z2

)

us
y = 0 (26)

where Λ = 1
2 (d11 − 2).

So, the solutions of equations (26) are Bessel’s functions,
us

y = JΛ(x). But, Λ is noninteger, so J−Λ(x) is also a
solution.
So, the motion of solid and fluid produced by the shear
wave are

us
y(x, t)=

(

x1−
d11
2

)

(λJΛ(x) + µJ−Λ(x)) ejωt (27)

uf
y(x, t)= −

ρ12

ρ22

(

x1−
d11
2

)

(λJΛ(x) + µJ−Λ(x)) ejωt(28)

where λ and µ are constants to be determined from the
initial conditions.

6 Conclusion

We have derived the Biot wave equations in a fractional
dimensional porous medium from the Stillinger-Palmer-
Stavrinou formalism. When the propagation is along a
non-integer dimensional coordinate, the amplitude vari-
ations are decribed by Bessel functions. This behaviour
must be compared to the one of fractal sets which are
governed by the scale invariance and power laws. Since
this formalism allows to distribute freely the fractional
dimensions between the coordinates, it is a way to in-
vestigate the wave propagation in porous media with
anisotropic fractional dimensions in which new coupling
processes can be induced.
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