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In this paper, we propose a numerical computation of the different waves generated when a spherical incident 
pulse is reflected and transmitted by a fluid/solid interface. In addition to the standard reflected and transmitted 
waves that propagate inside the volume, various surface waves can also be found in both propagation media. In 
the fluid, we can observe the longitudinal and transverse head waves, and the so-called leaky Rayleigh wave that 
generalizes the Rayleigh wave in a semi-infinite free solid medium to the case of an immersed interface. Similar 
effects can also be observed on the transmitted displacement field inside the solid material. We compare 
different numerical approaches, including semi-analytic methods (high-frequency approximation coupled to ray 
modeling approach) and implicit methods (finite elements and/or finite differences scheme), each method having 
its own advantages and inconvenients, and domains of validity. These different methods are used to evaluate the 
field reflected by the interface ; the transmitted displacement field is also analyzed from the same point of view.  

1 Introduction

In this paper, we are interested in the different contributions 
that appear when a spherical wave is reflected by an 
immersed solid material. In addition to the well known 
specular reflection, we can also observe head waves 
corresponding to the longitudinal and transverse waves 
generated in the solid, and also the so-called leaky Rayleigh 
wave that generalizes the Rayleigh wave in a semi-infinite 
free solid medium to the case of an immersed interface. 
These different contributions correspond to surface waves 
that propagate along the fluid/solid interface and 
permanently radiate some energy back in the fluid. At the 
Rayleigh angle, a distortion of the reflected wavefront 
appears, that corresponds to a fast variation of the reflection 
coefficient with respect to the plane wave incidence angle. 
We compare different numerical approaches, including 
semi-analytic methods (high-frequency approximation 
coupled to ray modeling approach) and implicit methods 
(finite differences scheme). These different approaches 
have their own advantages and inconvenients, and domains 
of applicability. We analyze here how these methods can be 
complementary to understand the physical phenomenon 
that occurs during the reflection of a pulse by an immersed 
interface.

2 General overview of the problem 

We consider here a plane interface separating a fluid and a 
solid medium. A point-like source is located in the fluid and 
generates an incident spherical wave (transient broadband 
signal) that is partially reflected in the fluid, and partially 
transmitted into the solid. In this paper, we only consider 
the reflected part of the acoustic field. 

A point-like receiver (observation point) moves from the 
source position parallel to the interface, and we are 
interested in the computation of the transient signal 
measured at each position of the observer after reflection by 
the plane interface.  

In the simple wavefront point of view, we expect to obtain 
the following contributions to the total reflected field in the 
fluid medium: 

Two spherical wavefronts, corresponding to the 

incident field and the so-called specular reflection, 

A conical wave, tangent to the specular reflection 
with an angle equal to the longitudinal critical 

angle (longitudinal head wave), this angle is 

characterized by the ratio , where  is the 

velocity of acoustic waves in the fluid, and  is 

the longitudinal velocity in the solid, 

lf cc / fc

lc

A second conical wave, tangent to the specular 

reflection with an angle equal to the transverse 
critical angle (transverse head wave), similarly this 

angle is characterized by the ratio , where 

 is the transverse velocity in the solid, 

tf cc /

tc

Another surface wave known as the leaky 
Rayleigh wave. 

Here we are interested in the computation of the specular 
reflection and leaky Rayleigh wave, since the two head 
waves are generally very small compared to the former. 
This will be verified numerically using a finite difference 
scheme. 

3 Computation of the reflected field 

The plane interface is supposed to be located in the plane 
z=0, and the point-like source at x=y=0 and z=h>0. The 
impulse incident field generated by the source can be 
classically described as a diverging spherical wave (in 
terms of the velocity potential): 

f
i c

R
t

R
tzyx

4

1
,,,

The computation of the reflected and transmitted fields is 
classically written for plane monochromatic waves. This is 
the reason why we start with a 1D Fourier transform over 
time of the transient incident field, followed by a 2D 
Fourier transform over the spatial variables x and y parallel 
to the interface ; this yields the decomposition of the 
incident field into plane monochromatic waves, that can be 
found as ref… 
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where  is the temporal frequency dual of time t, and 

and  the spatial frequencies dual of x and y. The 

coefficient can be understood as the spatial frequency along 
the z direction, and is obtained from the dispersion 
relationship in the fluid: 
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In the neighbourhood of the plane interface, hz  can be 

replaced by , therefore resulting in an incident wave 

that can be written as 
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The presence of the interface generates a reflected field 

whose temporal and spatial frequencies ,  and  are 

unchanged ; compared to the incident field, this reflected 
part propagates in the opposite direction along the z axis 
and it can be formally written as 
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In this expression,  corresponds to the reflection 

coefficient.

R

In the solid below the interface, the incident wave generates 
a transmitted longitudinal wave (L), and a vertically 
polarized transverse wave (TV). Both these components 
can be described in a similar manner that is not explicitly 
written here. 

The boundary conditions that must be satisfied in the plane 
z=0 are: 

the continuity of the normal displacement, 

the continuity of the xz and zz components of the 

stress tensor. 

Writing these three boundary conditions yields a complete 
solution of this problem, and allows to obtain the 

expression of the reflection coefficient . Similarly, it 

is of course possible to calculate the transmission 
coefficients for the L and TV waves in the solid. 

Classically, the reflection coefficient  only depends 

on the ratio fBxB/f and fByB/f.

R

R

The last step consists in returning to the real physical space 
by an inverse 2D Fourier transform over fBxB and fByB.

Formulating the inverse 2D Fourier transform over fBxB and fByB

as an angular integration, we obtain an integral along a 
complex path that starts at the origin 0  towards i0

i02/  (propagative components), and then continues 

towards i2/  (evanescent components). A small 

change in the Fourier kernel allows to extend this 
integration path by symmetry with respect to the origin ; 
this ensures that the complex integration path is closed to 
infinity. 

The Fourier kernel shows a phase that varies proportionally 
with the temporal frequency f. This yields the so-called 
semi-analytic approximation that corresponds to the high 
frequency assumption. In this case, the integral can be 
evaluated using the saddle-point method, that can be proved 
equivalent to the stationary phase theorem. Another 
formulation of this approximation can be written in terms of 
the Fermat principle, or minimum time of flight. 

There is only one particular point on the complex 
integration path that makes the phase stationary ; this point 
corresponds to the specular reflection, that can be 

interpreted in the classical geometrical way (from the 
source to the interface, and the back to the observer, along a 
path that satisfies the first Snell’s law). This contribution is 
characterized by a phase (or a time delay, its equivalent in 
the time domain), and a complex valued amplitude ABsB (that 
results from the reflection coefficient). Used in conjunction 
with a transient excitation signal s(t), this yields a specular 
reflected field that contains two terms: the first one is a 
replica of s(t), with an amplitude given by the real part of 
ABsB ; the second one is the Hilbert transform of s(t), with an 
amplitude given by the imaginary part of ABsB.

Using the stationary phase theorem yields a deformation of 
the integration path to an alternate path in the complex 
plane, along which the phase stationarity is satisfied. 
During this deformation, under some conditions we may go 
through a pole of the reflection coefficient ; the real part of 
this pole is very near the standard Rayleigh incidence, and 
its small imaginary part yields an exponential decrease of 
the corresponding contribution to the total reflected field. 
The influence of this pole can be evaluated in a closed form 
using the Cauchy integration method. This leads to a 
second term, that needs to be added to the specular 
reflection. Similarly, the second term is characterized by a 
phase (or time of flight) and complex amplitude. These two 
properties are then treated in the same manner as for the 
specular reflection.  

Figure 1 illustrates how the complex integration path is 
changed using the stationary phase method (or equivalently 
the steepest descent approximation). The intersection of the 
steepest descent integration path with the real axis 
corresponds to the specular reflection from the source to the 
observation point. 

Specular reflection angle 

Figure 1: changing the integration path from the green to 
the red path encounters a pole of the reflection coefficient. 

The second term resulting from the Cauchy integration 
around this pole corresponds to the leaky Rayleigh wave. 
Physically, it can be interpreted as a wave that propagates 
from the source to the interface with an incidence angle 
equal to the Rayleigh angle ; then we get a surface wave 
along the interface, that radiates energy in direction of the 
fluid along the Rayleigh angle again. This leaky Rayleigh 
wave can be observed only if the distance between the 
source and the observation point, measured parallel to the 
interface, is large enough. 

Original integration path 

Pole of the reflection 

coefficient Steepest descent 

 integration path
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These two contributions to the total reflected field are 
illustrated on figure 2: the red path corresponds to the 
specular reflection, and the yellow one to the leaky 
Rayleigh wave. 

Figure 2: Specular reflection (red) and leaky Rayleigh 
wave (yellow). 

From figure 2, we can easily predict that the leaky Rayleigh 
wave is observable if the distance d between the source and 

the receiver is larger than Rayleighh tan2  (if the receiver is 

located at a distance h above the interface). 

Note that the longitudinal and transverse head waves are 
not taken into account in this description. 

4 Software implementation 

The first software, developed by D. Cassereau (P.A.S.S., 
Phased Array Simulation Software), is based on the semi-
analytic approximation.  

The second software, developed by E. Bossy (SimSonic), is 
based on a finite-difference time-domain numerical scheme. 
Figure 3 shows instantaneous views of the reflected (and 
transmitted) fields obtained by this method at different 
observation times 8, 16 and 28 µs. We clearly identify the 
incident wavefront and the specular reflection. In addition, 
we also clearly see the two head waves (small compared to 
the other components), and the leaky Rayleigh wave 
contribution. 

i

Source Receiver

Rayleigh i Rayleigh

Interface 

P Q

Figure 3: Results obtained with SimSonic at 
different times. 

Figure 4 shows the echodynamic curve, the maximum 
amplitude of the temporal signal as the observer moves (the 
blue curve corresponds to SimSonic, and the red curve to 
P.A.S.S.). Both results match very well, except near 10 
mm. This corresponds to the transverse critical angle, 
where the reflection coefficient varies fast with the 
incidence angle. In this case, semi-analytic methods do not 
yield pertinent results. 
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Figure 4: echodynamic curve ; comparison between 
SimSonic (red curve) and P.A.S.S. (blue curve) 

Figure 5a shows the temporal signals calculated for a 
receiver located at a distance r=0, thus at the same position 
as the source. In this particular case, the leaky Rayleigh 
wave is not observable, and the reflected field reduces to 
the specular reflection pulse. We clearly see that the two 
simulations yields very similar results.  

Figure 5b corresponds to an observation point located at r = 
10 mm ; the results are no more similar, in amplitude nor in 
temporal signal shape. In this case, the semi-analytic 
method implemented by P.A.S.S. does not give very 
pertinent results, and this can be compared with the 
echodynamic curve shown on figure 4. 

On figure 5c, the distance r is now equal to 20 mm and we 
clearly identify the leaky Rayleigh wave that appears before 
the specular reflection pulse. We also observe that the 
temporal shape of the leaky Rayleigh wave contribution 
differs from the one of the specular reflection. 
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Figure 5: temporal signals obtained at different positions of the receiver ; a) r = 0 ; b) r = 10 mm ; c) r = 20 mm ; d) r = 40 mm 

It should be also noted that the two simulation methods 
provide again very similar results. The blue curve also 
shows a very small pulse at about 12 µs ; this corresponds 
to the transverse head wave that is of course present in the 
results from SimSonic, but not in those from P.A.S.S. We 
observe that this head wave contribution is very small 
compared to the leaky Rayleigh wave as well as the 
specular reflection. 

Finally, figure 5d corresponds to a distance r equal to 40 
mm: the two pulses are now very well separated in time. 
Once again, the two simulation methods provide very 
similar results, in signal amplitudes and temporal shapes. 

5 Conclusion

The first objective of this work was to implement the 
computation of the leaky Rayleigh wave in a software like 
P.A.S.S. that is principally based on semi-analytic 
approximation of the propagation ; clearly this is a success, 
at least in the particular case of a plane interface between a 
fluid and a solid. 

The second point of interest is that we could successfully 
compare the results obtained from two completely 
different simulation approaches, the first one based on an 
exact description of the propagation, and the second one 

based on the semi-analytic approach. Both methods have 
their own advantages and inconvenients, but they clearly 
converge to very similar results in most situations we have 
studied in this work. 
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