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Using the Finite difference Time Domain method (FDTD), we investigate the existence of absolute band gaps associated 
with a phononic crystal of finite thickness constituted by a periodical array of cylindrical dots deposited on a thin plate of a 
homogeneous material. We demonstrate the existence of a low frequency gap in the band structure of the phononic crystal 
plate which means that the acoustic wavelengths in the constituent materials are much larger than the lattice period. The 
opening of the gap is discussed as a function of the geometrical parameters of the structure, in particular the thickness of the 
homogeneous plate and the height of the dots. We show that the gap persists even if we change the materials constituting the 
plate and the dots. Besides, the band structure can exhibit one or more higher gaps whose number increases with the height 
of the cylinders. Finally, we discuss the condition to realize waveguiding through a linear defect inside the phononic crystal 
dots.

1 Introduction 

Phononic crystals are heterogeneous materials constituted 
by a periodical repetition of inclusions in a matrix. 
Associated with the possibility of absolute band gaps in 
their band structure [1], these materials have found several 
potential applications, in particular in the field of 
waveguiding and filtering [2, 3] as well as in the field of 
sound isolation [4, 5]. In addition to bulk phononic crystals, 
recent works have dealt with the study of surface modes of 
semi-infinite two-dimensional phononic crystals [6-8]. A 
few works also started to investigate the dispersion curves 
of free standing plates of 2D phononic crystals [9-12]. In 
particular those works tend to show the existence of 
absolute band gaps in the dispersion curves of surface 
modes [7]. In contrast to previous works, we present in this 
paper a theoretical investigation of a new structure 
constituted by a periodical repetition of dots of cylindrical 
shape deposited on a homogeneous free standing plate (Fig. 
1a). We use the Finite Difference Time Domain (FDTD) 
method to investigate the acoustic wave dispersion and 
unravel the conditions for the formation of absolute band 
gaps in the plate modes. More specifically, the behavior of 
the forming gap is discussed as a function of the 
geometrical and physical parameters. Finally, we show the 
possibility of confinement and waveguiding when a guide 
is created inside the phononic crystal by removing or 
modifying one row of dots. 

2 Results and discussion 

The phononic crystal is constituted by a square array of 
cylindrical dots deposited on a free standing plate as shown 
in Fig. 1a. The z axis of the Cartesian coordinates system 
(O, x, y, z) is chosen to be perpendicular to the plate and 
parallel to the cylinders. The lattice parameter a is taken 
equal to 1mm in the whole paper. The filling factor is 

defined as the ratio  = π r²/a², where r represents the 
radius of the cylinders. The height of the cylinders is 
denoted by h and the thickness of the plate by e.  

The materials that constitute the dots and the plate are taken 
to be respectively steel and silicon except if stated 
otherwise. The elastic constants and mass densities of the 
materials involved in the calculations are given in table 1. 
The Finite Difference Time Domain computation of the 
band structure is conducted on a unit cell of length a along 
x and y directions and length b along z direction. Along z
(see dashed lines in Fig. 1a), the unit cell contains both the 

plate and the dot, as well as a thin layer of vacuum on the 
top of the cell in order to decouple the interaction between 
neighboring cells. 

Fig. 1. (a) Phononic crystal made of a square lattice of 
finite cylinders deposited on a homogeneous plate. The 

dashed cube represents one unit cell of the periodic 
structure with dimensions (a, a, b). (b) Band structure in 
the frequency range [0, 2500]kHz for steel cylinders on a 
silicon plate, calculated in the first irreducible Brillouin 

zone of the phononic crystal. The parameters are 
a=1mm, h=0.6mm and e=0.1mm. (c) Magnification of 

(b) in the frequency range [0, 400]kHz
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Constant Silicon Steel Tungsten Aluminum Epoxy 

ρ (kg/m3) 2331 5825 18700 2730 1142 

C11 (N/m²) 16.57x1010 26.4x1010 50.23 x1010 10.82x1010 0.754x1010

C12 (N/m²) 6.39x1010 10.2 x1010 20.27x1010 5.12x1010 0.458x1010

C44 (N/m²) 7.962x1010 8.10 x1010 14.98x1010 2.85x1010 0.148x1010

Table 1: Physical characteristics of the used materials: ρ is the density, C11, C12 and C44 are the three independent elastic 
moduli of cubic structure. 

Fig. 1b shows the calculated band structure for propagation 
in the (x, y) plane, along the high symmetry axes of the first 
Brillouin zone, in the frequency range [0. 2500] kHz, and 
magnified in Fig.1c for its lowest part ([0, 400] kHz). The 
following parameters are used: filling factor =0.564, 
height of the cylinders h=0.6 mm and thickness of the plate 
e=0.1mm. A new feature with respect to usual phononic 
crystals is the existence of a low frequency gap, extending 
from 265 kHz to 327 kHz, where the acoustic wavelengths 
in all constituting materials are more than 10 times larger 
than the size of the unit cell. The occurrence of this gap is 
closely related to the choice of the geometrical parameters 
in the structure as discussed below. This result looks like as 
the low frequency gap in the so-called locally resonant 
materials [4, 5] where the opening of the gap results from 
the crossing of the normal acoustic branches with a flat 
band associated with a local resonance of the structure 
rather than from the Bragg reflections due to the periodicity 
of the structure. The band structure in Fig. 1b displays also 
a higher Bragg gap, around 2000 kHz, which is in 
accordance with the period of the structure as usual. 
Finally, in the vicinity of the Brillouin zone center, the 

three lowest branches starting at Γ point are quite similar to 
those of a homogeneous plate. They respectively 
correspond to the antisymmetric Lamb mode (A0), the shear 

horizontal mode (SH), and the symmetric Lamb mode (S0). 
At the boundary X of the Brillouin zone, the three 
corresponding branches are labeled as #1, #2 and # 3. 

We have studied in more details the behavior of the low 
frequency gap which is generated from the bending of both 
shear horizontal (branch #2) and symmetric Lamb mode 
(branch #3) of the plate. We first study the existence of this 
gap as a function of the parameters e and h, with a constant 
value of the filling factor: =0.564. For h=0.6mm, the 
lowest dispersion curves move to higher frequencies when 
increasing e from 0.1 to 1.2 mm and the gap closes for e
exceeding 0.4mm. This result is due to a faster upward shift 
of branch #3 with respect to the other branches as sketched 
in Fig. 2a. This evolution leads to the closing of the gap in 
both directions of the Brillouin zone. On the other hand, for 
e=0.1mm, the dispersion curves move downwards when 
increasing h and the gap disappears when h exceeds 1.0mm. 
As seen in Fig. 2b, this result comes from a slower 
downward shift of branch #3 with respect to the other 
branches. The central frequency of the gap depends on both 
parameters e and h: it increases either by increasing e or 
decreasing h. The opening of the gap is closely linked to the 
shift and bending of the branch #3 which is mostly 
dependent on the thickness of the plate than the height of 
the dots.  

Fig.2. (a) Band structure of the model of Fig. 1a for steel cylinders on a silicon plate. In comparison with the geometrical 
parameters used for the calculation of dispersions curves in Fig. 1, we have changed in (a) the thickness of the plate (e=1.2mm) 

and in (b) the height of the dots h=2.7mm. 
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As reported previously, the gap is generated from the 
bending of the branches #2 and #3. We have investigated 
the distribution of the eigenmodes inside the unit cell for 
these two branches, at the points A and B of the dispersion 
curves in Fig. 1c (h=0.6mm, e=0.1mm). The displacement 
fields of the corresponding eigenmodes (kA = kB = ( /a, 0, 
0); fA = 233.0 kHz and fB=180.6 kHz) have been calculated 
using the Finite Element method and are plotted in Fig. 3. 
For the point A (Fig. 3a), we clearly observe an oscillation 
of the dot in the x direction associated with a bendig of the 
plate. For the point B (Fig. 3b) we observe an oscillation of 
the dot in the z direction correlated to a strong bending of 
the plate. In both cases, the displacement fields are 
distributed in the dot as well in the plate, in agreement with 
the dependence of the branches #2 and #3 with both 
parameters e and h. Moreover, the stronger dependence of 
the branch #3 with the thickness of the plate observed in the 
previous section can be related to a higher deformation in 
the plate than in the dot. 

Fig.3. Displacements field of the eigenmode at the 
boundary of the Brillouin zone (X) inside one unit cell for 

e=0.1 mm, h=0.6 mm at the eigenfrequencies (a) 233.0 kHz
and (b) 180.6 kHz (points A and B in Fig. 2.b). In those 

figures, the dashed lines correspond to the rest position of
the structure.

We have also investigated the persistence of this gap 
against different combinations of the materials constituting 
the dot and the plate among a set of five materials 
(tungsten, steel, silicon, aluminum and epoxy). In Fig. 4a, 
we show the gap by changing the material of the plate when 
the dots are made of steel. Similarly, Fig. 4b displays the 
gap for various materials in the dots and the plate being 
made of silicon. One can notice the persistence of this gap 
even if the constituting materials are identical. This 
supports the origin of the gap as being related to the 
geometrical rather than physical parameters of the structure. 
On the other hand, the central frequency of the gap is very 
dependent upon the choice of the materials and happens at 
lower frequencies when we combine a high density material 
(tungsten) in the cylinders with a low density material  
(epoxy) in the plate.  

Fig.4. (a) Phononic Evolution of the lower frequency gap 
limits substituting the material of the cylinders or the plate 
by tungsten, steel, silicon, aluminum and epoxy. (a) Steel 
cylinders on the previous materials constituting the plate. 

(b) Various cylinders on silicon plate. 
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Fig.5. Band structure in the frequency range [0, 60] kHz of 
the model of Fig. 1a for tungsten cylinders on an epoxy 

plate, calculated in the first irreducible Brillouin zone of the 
phononic crystal. The lattice parameter is a = 1 mm, the 

height of the cylinders h = 0.6 mm and the thickness of the 
plate e = 0.1 mm. 

Fig.6. Band structure in the frequency range [0, 2500] kHz
for steel cylinders on a silicon plate with the following 

parameters are a = 1mm, h=2.7mm and e=0.2mm.

We show in Fig. 5 the low frequency band structure of the 
phononic crystal made of tungsten (for dots and epoxy (for 
the plate). The gap extends now from 32.7 kHz to 43.2 kHz. 
It is worthwhile to notice that one can obtain a gap in the 
audible frequency range, around 2 kHz, by multiplying all 
the lengths in the structure by 20, which means a lattice 
period of 20mm. Such solid system could then easily be 
used as acoustic insulator. 

    To investigate the possibility of more and/or higher 
frequency gaps, we present in Fig. 6 the band structure for 
the following parameters: h=2.7mm, e=0.2mm and 
=0.564; in particular, the height of the cylinders is now 

taken to be much bigger than in the preceding case. One 
can notice the occurrence of several gaps whose number is 
dependent upon the height of the dots. It is interesting to 
remark that, up to a certain frequency range, the opening of 
the gaps results from the crossing of the normal acoustic 
branches with almost flat bands, which is similar to the case 
of locally resonant materials. 

    Finally, we have studied the case of a rectilinear 
waveguide created inside the phononic crystal dots. The 
geometrical parameters have been chosen as in Fig. 1b, i.e. 
a=1mm, h=0.6mm and e=0.1mm to ensure the largest 
forbidden gap. A supercell containing five unit cells in the y
direction is considered in the FDTD calculation. The guide 
is created by removing one row of dots in the third unit cell, 
thus constituting a linear waveguide in the x direction. The 

width of the waveguide, δ, has been chosen as a variable 
parameter that insures a frequency translation of the 
waveguide modes [3]. Fig. 7a shows the band structure in 

the ΓX direction for the waveguide structure with δ = 1.05 
a. It exhibits one new branch inside the gap ([265.2, 327.9] 
kHz). To show the confinement of this mode inside the 
waveguide, we focus on the point labeled C of the 
dispersion curve. The modulus of the displacement field 
associated with this mode is displayed on the maps of Fig. 
7b and represented in three-quarter, top and lateral views. 
The map shows clearly that the acoustic displacement is 
confined in the plate and localized in the waveguide and 
does not leak out into the rest of the structure. 

3 Conclusion 

The purpose of this paper was to investigate, using the 
Finite Difference Time Domain method, the dispersion of 
the elastic waves of a periodic array of dots deposited on a 
plate. We put emphasis on the possibility of a low 
frequency gap and its existence conditions against various 
geometrical and physical parameters. This gap is generated 
by the bending of the two plate’s modes, i.e. the shear 
horizontal (SH) and the symmetric Lamb mode (S0). The 
central frequency of the gap depends on both geometrical 
parameters e, the thickness of the plate and h, the height of 
the dots. The opening of the gap is related to the bending of 
the symmetric Lamb mode (S0) which is strongly sensitive 
to the thickness of the plate. The gap is always present, 
even if the constituting materials are the same that supports 
the origin of the gap as coming from the geometric design. 
However, the central frequency and the width of the gap are 
dependent upon the materials constituting the cylinders and 
the plate. More particularly in view of acoustic isolation, 
the value of the lowest gap could be lowered using a strong 
density material for the cylinders and a low density one for 
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the plate. We also showed the existence of higher gaps, 
especially by increasing the height of the cylinders. Finally, 
we show that plate modes can be guided inside a linear 
defect created by removing one row of dots. Similar studies 
should be performed for different shapes of the dots, hollow 
or coated cylinders, etc… Such system could found original 
application in the field of guiding and filtering waves as 
well as sound isolation inside vibration plate structures.  
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