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aIGIC - Universitat Politècnica de València, Cra. Nazaret-Oliva S/N, E-46730 Gandia, Spain
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Since the invention of sound diffusers three decades ago a substantial effort has been made to predict the 
acoustic behaviour of these structures. BEM methods are well established for this purpose after a systematic 
comparison between simulations and experimental data. Volumetric methods such as Finite Element Methods 
(FEM) or the Finite Difference Time Domain method (FDTD) are not often used, due to their large 
computational cost. However, Near to Far Field Transformations (NFFT) can overcome that problem. Recently 
some of the authors have shown that the FDTD method is a useful technique to analyse the time domain 
signature of sound diffusers. In this paper a careful analysis of the performance of diffusers in the time domain 
(‘time spreading’) are reported, opening a new field of research. 

  

1 Introduction 

Sound scattering by a wall structure is an 
important factor affecting the sound quality of critical 
listening spaces. In recent years, significant efforts have 
been directed towards defining measurement techniques in 
order to characterize the performance of sound diffusers. In 
1995 Mommertz and Vorländer [1, 5] presented a new 
technique for the characterization of sound diffusers, based 
on the incoherency of diffusely reflected sound. Two 
alternative methods were introduced; the free field method, 
illustrating the concept of using coherence to split the 
reflected sound into its specular and scattered components, 
and a reverberant method which exploits this principle 
more efficiently to get a random incidence coefficient. Both 
methods provide the ‘scattering coefficient’; that is, a 
measure of the proportion of sound energy not reflected in a 
specular manner. This coefficient is ideally suited for 
incorporating scattering into the current generation of 
geometric room acoustic models. 

Both measurement techniques exploit certain time 
features of the scattered sound, and thus it is appropriate 
that a time domain technique should be used to simulate 
them. The Finite Difference Time Domain Method (FDTD) 
is increasingly popular in acoustics[3]. In this method, the 
equations are transformed to central-difference equations 
obtaining update formulations for the sound pressure and 
particle velocity. The main strength of FDTD relies on its 
being an extremely intuitive technique, so users can easily 
write and debug their own codes. The method can be easily 
implemented for room acoustics applications. 

The object of this work is to produce a FDTD 
model for the direct prediction of the random-incidence 
scattering coefficient of sound diffusers, using a simulation 
of the measurements associated with the ISO standard. 
Results of simulations of the free field method will also be 
presented, to validate the numerical technique.  

 

2 Numerical setup 

2.1 FDTD scheme 

The starting point of an acoustic FDTD model 
with no sound sources is given by the equations for 
conservation of momentum and continuity.  In a 

homogeneous medium with no losses, these can be written 
as: 
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 is the vector 
particle velocity field, ρ0 is the mass density of the medium 
and 2

0 ck ρ=  is the compressibility of the medium. The 
spatial and time derivatives of pressure and particle velocity 
can be approximated by central finite difference. For 
instance, the derivative of the sound pressure respect to x 
can be approximated as 
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where Δx is the spatial interval between two closely-spaced 
points in the x direction. In two dimensions, three grids 
must be defined; one grid for pressure and two for the 
different particle velocity components. To minimize the 
significance of higher order terms in equation 3 below, 
those grids are ‘staggered’. For instance, the mesh for the x 
component of the particle velocity is shifted a distance of 
Δx/2 with respect to the pressure mesh. The same applies 
for time meshing; the particle velocity meshes are shifted 
Δt/2 in time with respect to the pressure mesh. In doing so 
one can obtain a set of update equations to obtain the values 
of pressure and particle velocity after repetition for a given 
number of steps: 
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where the superscripts represent the time index, and the 
subscripts the spatial indices, namely: 

)½)(,,(½
, tnyjxippn
ji Δ+ΔΔ=+  (4a) 

),,½)((,½ tnyjxiuux x
n

ji ΔΔΔ+=+  (4b) 

Acoustics 08 Paris

9578



 

),½)(,(½, tnyjxiuuy y
n

ji ΔΔ+Δ=+  (4c) 

To ensure numerical convergence, the time step 
should be small enough to describe the wave propagation. 
The limit relationship between the spatial steps and the time 
step is given by the so-called Courant number, s , which in 
2 dimensions can be defined as follows 
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Another limitation of FDTD, common to other 
numerical techniques, results from the fact that the 
maximum element size used in discretization is determined 
by the frequency, with the sample criterion requiring four 
elements per wavelength. It has been shown in literature 
[33] that at least 10 elements per wavelength are required 
for adequate accuracy. Thus at high frequencies, a large 
numerical problem has to be solved. In this paper we will 
use a space step small enough to have accurate results up to 
5kHz. 

2.2 Free Field method 

The numerical scheme is designed as described in 
the free field method proposed by Momertz and Vorländer 
in [1&2] to estimate the scattering coefficient (Figure 1). In 
the free field method a series of impulse responses are 
measured as the test sample is rotated. A linear average of 
all the time-domain impulse responses, one for each angle 
of incidence, is undertaken. The averaging process removes 
incoherent reflections, and leaves only the coherent (and 
thus specular) part.  

In order to reproduce anechoic boundary conditions, 
a Perfectly Matched Layer (PML) [4] has been used at the 
boundaries to simulate free field conditions. The elements 
of the mesh have been chosen with an approximate size of 1 
cm, and in order to operate with a Courant number as close 
to 1 as possible, the sampling frequency is in the region of 
8.4 kHz. For frequencies above 8.4 kHz, numerical 
dispersion will be significant enough to mask the energy 
reflected from the domain boundary. 

The excitation is introduced by a point source placed 
at the right hand side of the integration area. Sound 
propagates towards the diffuser, and is (potentially) 
scattered in all directions on reflection. As the original idea 
was to move the diffuser instead of rotating it, the specular 
reflection angle is not well-defined. Due to this we include 
10 receiver locations placed in a line far from the test 
specimen. Time domain signals are recorded at those 
positions. Instead of using time windowing to separate 
incident and reflected sound, a reference calculation 
without test specimen is made; then the reflected sound is 
obtained by simply subtracting that reference condition 
from impulse responses measured with the test specimen 
in-place. This is equivalent, and much simpler, to using the 
Total Field to Scattering Field formulation [5]. 

Only 2D simulations are considered in this paper. This 
means that the exact procedure laid down in the ISO 
standard, in particular the rotation of the test specimen, can 

not be reproduced. Instead, in this paper the test specimen 
is translated from side to side.  

 

 
Fig.1 Numerical simulation of sound scattering following 

an adaptation of the Momertz and Vorländer free field 
method. 

 

2.3 Reverberation chamber method 

The basic idea of measuring scattering coefficients 
in a reverberation room is the same as described for the free 
field method. A circular test sample is introduced into a 
reverberant chamber, and impulse responses for different 
sample orientations are obtained. The initial parts of the 
reflections are highly correlated; these are the specular 
components of the reflection and remain unaltered as the 
sample is rotated. The latter parts of the impulse response, 
which are due to the scattering from the surface, depend 
strongly on the specific orientation.  

Using synchronous averaging of these impulse 
responses, the diffuse reflected sound is cancelled out and a 
virtual impulse response containing only the specular 
energy is obtained. All the impulse responses used in this 
method are reverse-integrated to provide corresponding 
reverberation times, and a pseudo-absorption coefficient 
can be obtained in an analogous way to the Sabine method. 
Finally, a scattering coefficient is obtained from this 
pseudo-absorption coefficient and the more normal 
absorption coefficient. 

The simulation scheme in for the simulations 
corresponding to the reverberant chamber method is 
represented in Figure 2. It is quite similar to the one of the 
free field method with the exception of the use of rigid 
terminations of the (reverberant) integration area. 
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Fig.2 Numerical scheme simulation of sound diffusers 

following the ISO method in reverberant chamber.  

effects.  

 

3 Results 

3.1 Free Field method 

Figure 3 illustrates the band limited reflected pulses 
for one particular position of the sample and averaged for 
many sample positions. It can be observed that the initial 
parts of the reflections are highly correlated. These are the 
specular components of the reflection and remain unaltered 
as the sample is moved. In contrast, later parts are not in 
phase and depend on the particular position. By averaging 
the reflected pressure, the scattered component is removed 
and only the specular energy remains. 

0 10 20 30
t(ms)-0.2

0.0

0.2

p(linear)

 
Fig.3 .- Band limited (1 octave centered at 500Hz) reflected 
pulses for one particular position of the sample (black line) 
and averaged for many sample positions (gray line). Set of 

triangles. 

For validation purposes, the scattering coefficient 
is represented together with the correlation scattering 
coefficient [6]. The correlation coefficient has been 
obtained following the AES standard [7] to obtain the polar 
patterns of the reflected sound, and by using the equation: 
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where p1 is the sound pressure reflected from the test 
specimen, p2 is the sound pressure reflected from a flat 
panel, *denotes the complex conjugate, θi is the receiver 
angle of the ith measurement position and n is the number of 
measurement positions. 

The results are illustrated in Figure 4. Notice that the 
scattering coefficient for the diffuser does not drop back 
down to zero at low frequency but hovers around 0.2. This 
can be attributed to an effect of the proximity to the sample. 
In our reproduction of the Momertz and Vorländer method 
microphones are not in the far field for low frequencies. 
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Fig.4 Normal incidence Scattering coefficient and 
correlation scattering coefficient of the tested surfaces vs 

frequency, evaluated with the Momertz and Vorländer free 
field method. 

 

3.2 Reverberant chamber method 

In figure 7 the impulse response of a single 
simulation is compared to the impulse response obtained 
after averaging several simulations with different positions 
of the test specimen. It can be observed that decay is 
slightly faster in the averaged case because of the removal 
of the diffusely reflected sound. 
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Fig.5 .- Impulse response of the room. Black line: one 
response. Gray line: Average of several impulses after 

translations of the test specimen 

Figure 6 illustrates the results obtained following the above 
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method. It can be seen that the diffuser seems to be more 
efficient than the set of triangles. The fact that the scattering 
coefficient does not reach 1 at high frequencies, as 
generally observed in experimental data, can be attributed 
to two causes; on the one hand the numerical phase error is 
larger for high frequencies where the larger values of the 
scattering coefficient are expected. So the numerical noise 
can mask the decorrelation between signals. On the other 
hand, we have observed that for high frequencies the 
decays from the stationary state are no longer straight lines. 
Due to that the ranges used to estimate the reverberation 
time considered here has been different to the ones 
recommended in the ISO standard.  
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0.2

0.4

0.6

0.8

1.0

s
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Fig. 6: Scattering coefficient of a diffuser, triangles 
and flat panel evaluated with the reverberant chamber 

method 

 

4 Conclusion 

A simple technique based on a FDTD scheme has been 
proposed to evaluate the random-incidence scattering 
coefficient of sound diffusers. Two methods have been 
tested the free field method and the reverberation chamber 
method. The normal incidence scattering coefficient and 
correlation scattering coefficient of different kind of 
diffusers like triangles or QRD have been analyzed.  
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