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An investigation is conducted how the geometrical properties of a crack distribution in a fault zone and the fric-
tional characteristics of the crack surface are reflected in the attenuation and dispersion of incident seismic 
waves. All cracks are assumed to be either aligned or randomly oriented. The crack width is assumed to obey a 
power law distribution, according to seismological knowledge. The crack surface is assumed to be stress-free, or 
to undergo viscous friction. When the crack distribution is statistically homogeneous, the calculated dispersion 
and attenuation exhibit that the variance of crack size affects in different way the coherent wave. The analysis on 
the effect of the friction shows that the crack scattering decreases as the viscosity increases, which is expected 
since for high viscosity, the crack faces remain almost welded to each other. The results obtained in this work 
will be applicable to the state close to the occurrence time in large earthquakes. 

1 Introduction 

In the present paper, we investigate the attenuation and dis-
persion of seismic waves propagating through a zone of 
randomly distributes frictional cracks. We employ the idea 
of mean wave formalism developed in [1, 2]. The crack 
width is assumed to obey a power law distribution [3]. The 
distribution of cracks is assumed to be homogeneous. All 
cracks are assumed to be either aligned or randomly 
oriented. We also assume that the crack surface is stress-
free, or undergoes viscous friction Newtonian-type. To deal 
with cracks under high confining pressure, the friction-free 
boundary conditions will be more realistic than the stress-
free boundary conditions (which we considered in our pre-
vious works [4, 5]), for the following two reasons. The first 
is the existence of fluid in the earth’s crust. The existence 
of fluid inside a crack cavity might obstruct the entire cohe-
rence of the crack surface. Such fluid could be highly visc-
ous like, for example, the composite of water and gouge. 
The second reason is the visco-elastic response of contact-
ing solid material to seismic waves under high confining 
pressure. The assumption subject to viscous friction for the 
crack surfaces was also adopted in [6, 7]. However, apart 
from [4, 5, 7], the authors of the other cited works assumed 
the low crack density. It is, however, thought that the crack 
density and the crack interaction are high in the epicentral 
region of imminent large earthquakes. Hence the assump-
tion of high crack density is required to study the state im-
mediately before the occurrence of large earthquakes. We 
propose in this paper a theoretical study which takes into 
account a relatively high crack interaction. The boundary 
integral equation formulation applied in [7, 8] can rigorous-
ly treat the multiple crack interactions for arbitrary wave 
numbers. This method, however, faces the difficulty of core 
memory and cpu-time limits in dealing with large numbers 
of cracks.  

It has been observed experimentally and verified analytical-
ly that multiple scattering by cracks generates a coherent 
wave that is described by a complex-valued and frequency-
dependent wave number. In this paper, we have been able 
to express the effective wave number in closed form, from 
which both real and imaginary parts (thus, dispersion and 
attenuation) can be obtained without difficulty. This formu-
la formally requests the knowledge of the angular shape 
function for a frictional crack, and is relevant for even 
moderate densities of cracks. In the following, the effect of 
the variance of crack width and the influence of the viscosi-
ty on the scattering attenuation and dispersion is investi-
gated. In addition, the low- and high-frequency limits are 
analytically derived.  

2 Multiple scattering formulation 

We consider N  cracks uniformly distributed, and N  is as-
sumed to be very large. Each crack has a very thin cavity 
filled up by Newtonian fluid with viscosity coefficient .
The mean thickness of cavity, , is thought to be negligibly 
small, though its value affects the strength of viscous fric-
tion acting on the crack surface. The crack width 2a is as-
sumed to obey a power law density distribution, 

p a Ca ,    min maxa a a , (1) 

where mina  and maxa  are the lower and upper limits of the 
distribution a ,  is a positive constant, and C  is a norma-
lization factor given by [3] 

1 1
max min

1
max min

1 / , 1,

ln / , 1.

a a
C

a a
 (2) 

Let incu  denote the incident displacement in the absence of 
any crack. The total displacement field u  is the sum of the 
incident displacement incu  and the scattered displacements 
corresponding to each of the N  cracks. Thus, one has

1

N
inc j E

P P P j
j

u u T u , (3) 

where P  and j  denote the observation point and the loca-
tion of the j th crack, respectively. In Eq. (3), E

ju
represents the wave effectively incident on the j th crack, 
and the term j E

P jT u  is the wave scattered by the j th crack 
due to the excitation of E

ju , which, in turn, is expressed as 

1,

N
E inc i E
j j j i

i
i j

u u T u . (4) 

Eqs. (3) and (4) form the basic equations which describe the 
displacement field exactly, though formally. The operator 
j
PT  determines the scattering property of the j th crack. The 

stochastic property of the crack is assumed to be described 
by the location of the center of the crack, the crack width 
and the crack orientation. In addition, it is assumed to be 
independent of that of the other cracks. Then, we have the 
configurational average of the total displacement, Pu , as  

0

1

N
inc j E j

P P P j j j j jj
j

n
u u T u p p a d d da

N
, (5) 

where p  is the probability density function, j  is the 
location of the center of the j th crack, 2 ja  is the width of 
the j th crack, and 0n  is the number density of the crack 
distribution. The quantity E

j j
u  represents the exciting 

displacement acting on the j th crack averaged over all 
possible configurations of all the other scatterers. Here, we  
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Fig.1 Global and local coordinate systems. The cavity of  
all cracks is filled with fluid with viscous coefficient .

adopt the approximation, first introduced by Foldy [9] 

limE
j Pj P j
u u , as N , (6) 

and reduce Eq. (5) to the following form of an integral equ-
ation 

0

1

N
inc j j

P P P j j j j j
j

n
u u T u p p a d d da

N
. (7) 

Next, we represent 
j
P jT u  in explicit form. We define the 

local coordinate system 1 3,
j jx x  attached on the j th crack 

( 1,2,...,j N ) and the origin is assumed to be at the cen-
ter of the crack. The 1

jx  axis coincides with the crack faces. 
The angle between the 1

jx  and 1y  axes is given by j , and 
the center of the crack is located at 1 3,

j j j  in the 
coordinate system 1 3,y y , as shown in Fig. 1. As in [1], 
we seek a coherent displacement field Pu  in the form 

1 3 33
i sin cosie e

j j j
j jK x xKy

Pu , (8) 

where K  is referred to as the effective wave number. Here 
the time factor exp i t  is omitted for brevity. The wave 
front of the effective plane wave is assumed to parallel the 

1y  axis. According to the representation theorem, j
P jT u

can be described in terms of the displacement discontinuity 
across the crack faces [10], ju , generated by the inci-
dence of ju . If we take into account the form of Eq. (8), 
we have [2] 

3i 1
0 0

3

cos e
4

j j

j

aKj T
P j j j Tj a

KT u u s H k r ds
x

, (9) 

where /T Tk c ,
22 2

0 1 3( )
j jr x s x , Tc  is the shear 

wave speed of the matrix, and 1
0H  is the Hankel function 

of order zero. If we apply 2 2 2 2 2
1 3/ ( ) / ( )j j

Tx x k
on both sides of Eq. (9), combining the resulting expression 
with Eqs. (7) and (8), and using 1 3 1 3

j j j j jd d d dx dx ,
we obtain [2] 

max

min

2 2 2
0

/ 2
2

/2
cos , , , , ,

T

a

T
a

k K n K

p p a B k a dad
 (10) 

where mina  and maxa  are the lower and upper limits of the 
distribution of a , and  

i sin, , , , e
a

Ks
T

a
B k a u s ds . (11) 

Stochastic property of each crack was assumed to be identi-
cal, so that the subscript j  could be discarded in the Eq. 
(10). Note that the complex-valued number B  given by Eq. 
(11) depends on Tk , but not on K . It can be shown that the 
quantity B  is related to the forward scattering shape  
function ,f  for a crack of width 2a , mean thickness  

Fig.2 Dependence of (a) 1Q  and (b) c on . All cracks 
have equal width. 0  and 0.25 .

, and viscosity coefficient , excited by an incident plane 
wave of wave number Tk  at an arbitrary angle  from the 
normal of the crack [4] 

2 2

4 ,
, , , ,

cosT
T

f
B k a

k
. (12) 

Substituting Eq. (12) into Eq. (10) we obtain the following 
simple and explicit formula for the effective wave number 

02 2
2

4 0
1T

T

n f
K k

k
, (13) 

where 0f  is the average forward shape function given 
by 

max

min

/2

/2
0 ,

a

a
f p p a f dad . (14) 

Note that the expression (13), which solves Eq. (10) posed 
initially in [2], is a new result. Let ,P Pr  denote the polar 
coordinates defined by 2

Pr
2
1x

2
3x  and cos P

3 / Px r . Next, we calculate the angular shape function 
,Pf  for a frictional crack insonified by an incident 

wave 0 1 3exp i sin cosinc
Tu u k x x , where 0u  is 

an amplitude factor. The solution of the one-crack problem 
cannot be expressed in closed-form. However, it can be ex-
pressed in terms of a dislocation density, which is a solution 
of a singular integral equation [11]. For a frictional crack 
with a cross-section located along the segment 3 0x ,

1x a , in the 1 3,x x  plane, the dislocation density b
satisfies the two equations,  

1 1
1

1
( , , ) ;

a

a
b v S v x dv g x

v x
,  (15) 

( , , ) 0
a

a
b v dv , (16) 

for 1x a . In Eq. (15), the functions S  and g  are given 
by 

0
; 1 sin 2i HTS x x d k x , (17) 

i sin
0i cos e Tk x
Tg x u k , (18) 

where H  is a unit step function and  is defined by 
2 2 2

Tk , with Im 0 . The dimensionless parame-
ter /Tc  represents the strength of the friction, and 

 denotes the rigidity of the matrix. When 0 , the 
crack surface is stress-free. In the far field, the scattered 
displacement in the presence of a crack takes the form 
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Fig.3 Dependence of (a) 1Q  and (b) c on . All cracks 
have equal width. 0.05  and 0 .

i
0
2 i e ,T Pinc k r

P P
T P

T u u f
k r

, (19) 

where the angular shape function ,Pf  has the follow-
ing general form [4] 

i sin

0

cot
, ( , , )e

2
T P

a
k vP

P
a

f b v dv
u

. (20) 

Then, the forward ( P ) scattering shape function can 
be obtained from Eq. (20), once the dislocation density has 
been computed from Eqs. (15)-(16).  

3 Wave attenuation and dispersion 

Observe that 2ImK  and Im 0f  in Eq. (13) have the 
same sign. It can be verified numerically that Im 0f  is 
positive for all values of Tk , , a  and . It follows then, 
that 2K  lies in the upper complex plane. Calculating from 
Eq. (13) the complex root of 2K  that lies in the first quad-
rant, one finds that  

2

2
0

Re
2 4 0

T

T

qk
K

k n f
, (21) 

2
0
2

0

4 Im 0
Im

2 4 0
T

T

n f k
K

q k n f
, (22) 

where the real-valued quantity q  is defined by 

1/ 22 2
0 0Re 4 0 4 0T Tq k n f k n f . (23) 

The symbols Re  and Im  stand for the real and imaginary 
parts of a complex number, respectively, and the vertical 
bars denote the complex modulus. Since the attenuation co-
efficient 1Q  and the wave speed c  are expressed in the 
forms [12] 

1 Im
2
Re
K

Q
K

,
Re
T

T

kc
c K

, (24) 

Eqs. (21)-(24) yield the expressions for 1Q  and c  as func-
tions of Tk .

We assume two models for the crack orientation, that is, the 
aligned crack model and the randomly-oriented crack 
model. All cracks are assumed to be aligned in the former 
model, so that p , where  denotes the 
Dirac function, and  is the angle between the crack faces 
and the wave front of the coherent plane wave Pu . The 
orientation of each crack is assumed to be random in the 
later model, and the distribution for the crack orientation is 

Fig.4 Dependence of (a) 1Q  and (b) c on . All cracks 
have equal width. 0.05  and 0 . Broken curves 

show the asymptote of 1Q  at high frequency, and the stat-
ic value of c . The case of randomly-oriented cracks is also 

plotted as ( o o- - ). 

thought to be homogeneous, so that 1/p . Calcu-
lated results are shown in Figs. 2-6.  

The attenuation coefficient 1Q and the wave speed c  are 
functions of the crack concentration 2

0n a  and the di-
mensionless frequency Tk a , when all cracks have the 
same width 2a ; or of 2

0 maxn a , maxTk a ,

min max/a a  and , when the crack width has the power 
law density distribution (1); 1Q and c  are also functions 
of the dimensionless friction parameter  and the orienta-
tion angle  (when the crack orientation is not random). 

Fig. 2 illustrates the effect of 1Q  and c  on . An increase 
in the crack concentration  produces larger (smaller) val-
ues for the wave speed (attenuation) for the entire range of 
frequencies, as can be observed in Fig. 2.  

When the frequency approaches infinity, for any value of  
, , and , the attenuation coefficient oscillates around 

a constant value, and the wave speed approaches the speed 
in the matrix. For all frequencies and crack densities consi-
dered, the wave speed c  of a cracked medium is always 
smaller than Tc  of the uncracked medium. In Figs. 3-6, the 
broken curves show the static and geometrical limits of the 
wave speed and the attenuation, respectively, which are de-
rived in the next section.  

Fig. 3 shows the effect of 1Q  and c  on . As  increas-
es, the peak value of 1Q  becomes broader and the peak 
frequency decreases monotonically. The dependence on 
of c , denotes that the corner of the curve moves to low-
frequency range as  increases. The figure denotes that the 
wave length at which the most intensive scattering is ob-
served becomes longer as the viscous friction becomes 
stronger. The effect of the friction may be to suppress the 
slips along the cracks especially in the high frequency 
range.  

Fig. 4 illustrates the effect of 1Q  and c  on , when the 
crack surface is stress-free. The figure denotes that the peak 
frequency at which 1Q  takes the peak value is almost in-
sensitive to . As the cracks are aligned more obliquely to 
the incident wave, 1Q  (c ) values become smaller (larger). 
Results corresponding to the case of randomly-oriented 
cracks are also given in Fig. 4. The essential advantage of 
the assumption of random crack orientation is that one can 
treat the cracked medium as a macroscopically isotropic 
medium which is much easier to handle than the orthotropic 
one (when cracks are aligned). Observe that at low frequen-
cies, 1Q  and c  for randomly-oriented cracks, are almost 
identical to the corresponding values of 1Q  and c  for the 
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Fig.5 Effect of  and  on 1Q . (a) Dependence on 
with 2 . (b) Dependence on  with 0.1 . We 

chose 0  and 0 . Broken curves show the asymp-
tote of 1Q  at high frequency. 

case of cracks inclined at 45 .

The effects of  and  on 1Q  and c  are now inspected. 
Fig. 5 shows the dependence of 1Q  on  and . The at-
tenuation 1Q  is larger for smaller  and/or larger . This 
occurs because the rate of the number of larger cracks in-
creases as  decreases and/or  increases for a fixed maxa
: larger cracks will contribute more to the attenuation. The 
peak frequency at which 1Q  takes the peak value tends to 
increase, and 1Q  has a broader peak as  increases 
and/or  decreases. 

Fig. 6 illustrates the dependence of c  on  and . The 
form of all curves show the same general features. The 
wave speed is observed to be smaller for smaller  and/or 
larger . This occurs because smaller  and/or larger 
cause more resistance to the propagation of the coherent 
wave as stated above in the interpretation of the effect of 
and  on 1Q . The increase rate of c  seems to be consi-
derably dependent on the model-parameters in the high-
frequency range, which contrasts with the behavior of 1Q
in Fig. 5. However, we notice that the ripples in the high 
frequency-range, on both curves of 1Q  and c , disappear 
as  decreases.  

4 Analytical limits 

The low- and high-frequency limits of the wave speed and 
the attenuation coefficient corresponding to a system of 
frictional cracks are obtained in this section in analytical 
form.  

4.1 Low-frequency limits 

The limit of the angular shape function ,Pf  given by 
Eq. (20), when Tk a  approaches zero, can be calculated 
in closed-form by using the method presented in [13]. Then, 
using this expression in Eqs. (14), (21)-(23) one finds the 
following results when all cracks have equal width 

   case 1 : 2cos
1/22 21 cos ln

T

c
O

c
,  (25) 

2 2 3
4

3/22

cos

16 1 cos
a O ,    ( 0 ), (26) 

Fig.6 Effect of  and  on c . (a) Dependence on  with 
2  is assumed. (b) Dependence on  with 0.1 .

We chose 0  and 0 . Broken curves show the 
static value of c .

2
2

3 / 22

, cos

1 cos

h
a O ,    ( 0 ); (27) 

   case 2 : 2cos
3/22

2 2 2

16 cos 1
ln

cosT

c O
c

, (28) 

3
1/ 22

ln
cos 1

a O ,    ( 0 ), (29) 

2

2

, cos
cos 1

h
a O ,    ( 0 ), (30) 

where ,h  is a linear combination of  and sin ,
and all cracks are aligned. When the cracks are randomly 
oriented, one infers that 

   case 1 : 2
1/2

22
ln

2T

c
O

c
, (31) 

3 /2 2
3 42

2 32
a O ,    ( 0 ), (32) 

3/2
22

2
a h O ,    ( 0 ); (33) 

   case 2 : 2
3/2

2 2

2 32
ln

2T

c
O

c
, (34) 

3/2
22
ln

2
a O ,    ( 0 ), (35) 

2
2

ha O ,    ( 0 ), (36) 

where h  is the mean value of ,h  over the range 
0, . Note that ImK  represents the spatial attenua-

tion. Observe that, as expected form physical ground, the 
wave speed in the limit as  approaches zero is indepen-
dent of the viscosity. For 2cos  and 2 , Eqs. 
(28) and (34), respectively, show that the velocity tents to 
infinity as the frequency approaches zero, which is not 
physically acceptable. Thus, we conclude that the results of 
this paper are valid for small values of the crack density not 
greater than 21/ cos  for the aligned crack model, and 
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less than 2/  for the random crack model. A conclusion 
similar to ours is obtained in [14], where the viscosity is 
zero and crack faces are parallel to the incident wave front. 
The foregoing analysis can of course be reiterated for the 
case when the crack width has the power law distribution 
(1). Results are not reported here. However, we observed 
that the results for the wave speed are identical to the first 
order in the crack density to the corresponding limits given 
in [2]. 

4.2 High-frequency limits 

The high-frequency asymptote of ( , )Pf  can be calcu-
lated in a manner similar to that for the low-frequency limit. 
In this limit, one finds that, when all cracks have equal 
width and orientation angle , the attenuation is given by 

0 0
2

2 cos sin
1 2 1 2
n a n a

a , (37) 

whereas, for randomly-oriented cracks  

04
1 2
n a

a . (38) 

When the crack width obeys the power law distribution (1), 
one infers  

for

for

for

max

max

2

max 1

1
, 1;

ln
ln , 2;
1

1 1 , 1,2.
2 1

a

a

a

 (39) 

The limits (37) and (38) agree with results of [4] where the 
viscosity is zero.  

5 Discussion and conclusion 

The effect of random crack distribution on the attenuation 
and dispersion of seismic waves is theoretically investi-
gated.  

The strength of the viscosity can be naturally neglected for 
low frequency. It means that, when the incident wavelength 
is much longer than the crack width, the cracks do not 
hinder the incident wave, whether they contain a viscous 
fluid or not.  

When the viscosity increases, the wave speed increases. At 
the same time, the attenuation decreases and approaches 
zero. This shows that the crack scattering decreases as the 
viscosity increases, which is expected, since for high vis-
cosity the crack faces remain almost welded to each other.  

In the high-frequency limit, the wave speed approaches the 
speed in the matrix, and the attenuation coefficient reaches 
constant values. The limit of the attenuation is a function of 
the crack density and viscosity, when all cracks have the 
same width; but also on , , when the crack width has 
the power law distribution. The orientation angle appears in 
the limit only when the cracks are not randomly oriented.  

When all cracks have the same width 2a , we notice that 
there appear characteristic ripples in the high-frequency 
range, on curves of 1Q  and c . They reflect the periodic 
fluctuation of the integrated displacement discontinuity 

across each crack. This is interpreted as the variation of the 
interference pattern between the diffracted fields originated 
from both of the crack tips. When the crack width obeys the 
power law distribution stated above, due to various scales 
of the crack, no appearance of such ripples are observed on 
curves of 1Q  and c . The ripples with various wave-
lengths, which are related to the width of each crack, might 
be smoothed through the configurational averaging.  

In the low-frequency limit, we find that the numerical re-
sults are valid for values of crack density less than 

21/ cos  for the aligned crack model, and less than 
2/  for the random crack model, independently of the vis-
cosity.  
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