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This work shows how to couple transfer matrix method to finite element method with a view to analyze the 
acoustic response of an automotive hollow body network with a minimum of memory requirements and 
computational time.  A hollow body network is made up from a series of elongated fluid partitions similar to 
waveguides.  These fluid partitions are generally separated by sealing parts. In the proposed hybrid model, the 
elongated fluid partitions are modeled using one-dimensional fluid finite elements, and the sealing parts using 
transfer matrices. After discretization of the acoustic pressure and application of the variational principle, the 
global finite element matrix system is obtained, where only the nodal pressures in the fluid partitions remain.  
During this process, each transfer matrix has been converted into a kind of admittance matrix, where no 
additional degrees of freedom are necessary to take into account the sealing parts into the finite element model. 
The so called TM-FEM method is applied on a simple hollow body network and compared to experimental 
measurements. Good correlations are obtained.  
 

Introduction 

Nowadays, expanding sealing parts in automotive hollow 
body networks (HBN) are widely used. These parts are 
usually made up from expanding foams or an assembly of 
expanding foams and solid materials (see Fig. 1).  The use 
of these sealing parts has demonstrated an influence on the 
noise inside the car [1].  These findings proved the 
necessity of optimizing both the position and choice of 
sealing parts to minimize/control sound propagation in the 
HBN.  To do so, a numerical modelling of the HBN is 
required.  Unfortunately, a complete three-dimensional 
numerical modelling would require significant computation 
time which goes against fast optimization in a short cycle 
time development.  To get around this problem, this paper 
proposes a hybrid numerical method dedicated to the 
acoustical analysis of automotive hollow body networks.  
This hybrid method couples the transfer matrix (TM) with 
the finite element method (FEM).   

Modelling the fluid partitions 

A simple HBN is shown in Fig. 2.  It consists of two 
elongated fluid partitions, similar to waveguides, separated 
by a sealing part.  Below the cut-off frequency (fc) of the 
waveguides, the elongated fluid partitions can be modelled 
with one-dimensional acoustical finite elements.  In this 
case, only acoustic plane waves propagate in the HBN.   At 
the nodes of the acoustical finite elements, only the 
acoustical pressure is defined [2].  
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Fig. 1 Typical sealing part used in an automotive hollow 

body network. 
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Fig. 2 Waveguide with a sealing part and its hybrid TM-
FEM model.   

Modelling the sealing parts 

Contrary to the fluid partitions, it is not possible to model 
the vibroacoustic behaviour of complex sealing parts using 
classical one-dimensional finite elements only.  With a 
view to limit the numerical model to one-dimensional finite 
elements, a sealing part will be modelled using a transfer 
matrix.    
 Assuming normal incidence acoustic plane waves, 
one could characterize a sealing part by a transfer matrix of 
the form   
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21 22
 

T T
T T
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⎣ ⎦
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Coefficients Tij are usually complex and frequency 
dependent.  For simple acoustical parts (ex.: a single layer 
of open-cell foam or an expansion chamber), these 
coefficients can be analytically computed [3,4].  However, 
for complex parts, such as the sealing part shown in Fig. 1, 
these coefficients can be obtained experimentally [4] or 
from three-dimensional finite element simulations.  It is 
worth mentioning that for complex parts, the plane wave 
assumption may not hold in the near field.  Nevertheless, 
far from the parts, the plane wave assumption is still valid 
for frequencies lower than the cut off frequency of the 
waveguides.  Consequently, during experimental or 
numerical evaluations of T, one should not pick up the 
pressure in the near field of the parts.  To prevent this, it is 
suggested that a plenum of air be added before and after a 
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complex part.  The thickness of the plenum should be at 
least equal to the largest lateral dimension of the 
waveguide.  In this case, the plenum of air and the original 
part form the characterized part on which T applies. 
 The transfer matrix defined in Eq. (1) is used to link 
the acoustic pressure and velocity in front of the part (side 
A) to the pressure and velocity at its rear side (side B): 

A B

p p
u u

⎧ ⎫ ⎧ ⎫=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

T .   (2) 

For the case shown in Fig. 2, the sealing part separates two 
fluid domains.  Assuming both domains contain the same 
fluid (ex.: air), using Euler’s equation, Eqs. (1) and (2) 
yield the following two equations: 
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After some mathematics, the previous two equations can be 
rewritten as: 
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Coupling fluid partitions and sealing 
parts 

Using the classical Galerkin’s procedure on the one-
dimensional Helmholtz equation [2] for the fluid partitions 
together with Eq. (4), a symmetric weak integral 
formulation is obtained. After discretization of the weak 
formulation, the transfer matrix appears as a symmetric 
elementary matrix. This matrix is similar to an admittance 
matrix of the following form: 

22
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1TM

TjA
TT
−⎡ ⎤

=⎡ ⎤ ⎢ ⎥⎣ ⎦ −ω ⎣ ⎦
 .   (5) 

This corresponds to an elementary matrix that is inserted in 
the global matrix system.  This method only uses the nodal 
pressures of the fluid partitions.  Consequently, it does not 
add any additional degrees of freedom to the global system.   
 The schematic of this so-called TM-FEM model is 
shown in Fig. 2.  One can note that only the nodal pressures 
in the fluid partitions are defined.  The TM element is just 
seen as a relation between the nodal pressures just before 
and after the sealing part.  
 Finally, one can use the admittance matrix defined in 
Eq. (5) to determine the velocities on both faces of the 
sealing part characterized by T.  In this case, the following 
expression should be used: 
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 .   (6) 
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Fig. 3  Mesh of the T-shaped hollow body network 

Experimental validation 

The TM-FEM is now tested on the simple T-shaped hollow 
body network shown in Fig. 3.  Each hollow body segment 
is made up from a cylindrical tube of 49.15 mm in diameter 
(fc ≅ 4 070 Hz).  Three analysis zones are defined on the 
network.  The length of each zone is given in millimetres 
on Fig. 3.  A reference microphone is located at the 
beginning of the first zone, where the acoustic excitation is 
applied.  On the other ends, rigid walls are added.  Two 
similar pillar fillers are placed in the HBN (one in zone 1 
and one in zone 3).  For the sake of simplicity in the 
evaluation of the transfer matrices, the pillar fillers are 
50-mm thick open-cell melamine foams.  On a numerical 
viewpoint, the HBN is meshed with linear one-dimensional 
finite elements.  Each finite element node fits with a 
measurement point.  Zone 1 contains 29 points, zone 2 
contains 20 points, and zone 3 contains 14 points.  
 Figures 4 and 5 compare the quadratic pressure level 
(in dB-ref pressure at the reference microphone) for each 
analysis zone in the cases without and with the pillar fillers, 
respectively.  For both cases, good correlations between 
measurements and simulations are obtained.  However, in 
the case without pillar fillers, one can note that the pressure 
level is overestimated at the resonances. This difference 
might be due to the damping of air in narrow tubes (viscous 
and thermal losses).  A damping loss factor of only 0.005 
was used in the simulations.  Moreover, and more 
importantly, damping due to the acoustic radiation of the 
walls exists.  This phenomenon was not taken into account 
in the acoustic model, where the HBN was considered rigid.  
The overestimation of the pressure level is not visible when 
the pillar fillers are placed into the HBN, see Fig. 5.  This is 
logical since the dissipation due to the pillar fillers 
dominates over the other types of dissipation in this 
particular HBN. 

Conclusion  

This work has proposed a hybrid method for coupling 
transfer matrix and finite element method. The transfer 
matrix has been expressed in terms of a symmetric 
elementary matrix to be inserted in the global finite element 
matrix system.  A correlation with experimentations has 
been successfully achieved for a simple T-shaped hollow 
body network.  Future works should address a more  
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Fig. 4 Quadratic pressure level (dB – ref. pressure at input 

microphone) for each zone. Case without pillar fillers. 
 
complex automotive hollow body network such as the one 
shown in Fig. 6.  In this case, large air cavities would be 
modelled with three-dimensional fluid elements, 
waveguides with one-dimensional fluid elements, and the 
pillars filler and sealing parts with transfer matrix. 
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Fig. 5 Quadratic pressure level (dB – ref. pressure at input 

microphone) for each zone. Case with pillar fillers. 

 
Fig. 6  Hybrid TM-FEM model of a real automotive hollow 

body network. 
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