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In this paper, sound pressures are computed by two techniques using finite element method. One is a technique 
by solving the system of linear equations directly (direct analysis) and the other is a technique by modal 
superposition (modal analysis). To confirm the accuracy of the direct analysis, sound pressures obtained by the 
technique are compared with those obtained by the modal analysis in a room with the volume of 10 m3. Then, as 
the modal analysis, two methods are employed: one is simplified method based on real eigenvalue problem 
assuming that the damping matrix, [C], has orthogonality; and another is the method based on complex 
eigenvalue problem. Those obtained by the direct analysis are in good agreement with those obtained by the two 
kinds of modal analyses regardless of absorption conditions, even if the analysis is carried out at the frequency 
close to an eigen frequency. Next, diffuseness of sound field below 315 Hz in a room, which is used in the 
measurement of ISO140-3, is investigated by the direct analysis from the viewpoint of mean sound pressure 
level measurements.  

1 Introduction 

In recent years, various numerical methods based on the 
wave acoustics have been proposed to accurately predict a 
sound field inside buildings [1]. Among these methods, 
finite element method (FEM) is advantageous in its broad 
range of adaptability. The method can successfully be 
applied to such sound fields like one with temperature 
distribution [2], and so on. The authors presented finite 
elemental procedure in the former paper [3], which enables 
us to estimate resulting accuracy of sound field analyses by 
FEM. The authors have also proved that sound pressure 
level distributions in an irregularly shaped reverberation 
room obtained by the authors' FE-analysis were in good 
agreement with those of measurements on various 
conditions caused by absorbent materials [4]. 
 
Using FEM, sound pressures in steady-state can usually be 
evaluated by two techniques: one is a technique by solving 
the system of linear equations directly (direct frequency 
response analysis, for short, direct analysis); the other is a 
technique by modal superposition (modal frequency 
response analysis, for short, modal analysis). Generally, if 
absorption is small, the direct analysis has mathematical 
uncertainty at the points close to eigen frequencies of the 
cavity, although the analysis requires less computational 
costs.  
 
In this paper, we focus on the relationships between the 
accuracy of the direct analysis and boundary absorption 
condition of analytical model. To confirm the accuracy of 
the direct analysis, sound pressures obtained by the direct 
analysis are compared with those obtained by the modal 
analysis. Then, as the modal analysis, two methods are 
employed: one is the simplified method based on real 
eigenvalue problem assuming that the damping matrix, [C], 
has orthogonality (MK-type); and another is the method 
based on complex eigenvalue problem (MCK-type). First, 
in case of sound fields with absorbent material, absorption 
coefficients of which are 0.2 or more, sound pressure level 
distributions obtained by the direct analysis are compared 
with those obtained by the modal analyses in a small cavity 
with the volume of 10 m3. Next, to clarify accuracy of the 
direct analysis when absorption is small, the sound pressure 
level distributions and frequency responses obtained by the 
direct analysis are compared with those obtained by the 
modal analyses in case that all boundaries of analytical 
model equal 0.01. Finally, as an application to the actual 
problem, a measurement of a mean sound pressure level in 
a room is investigated by the direct analysis. 

2 Finite element sound field analysis 
of cavities 

2.1 Basic formulation 

Following the standard finite element procedure applied to 
a three-dimensional wave equation assuming the time 
constant to be eiωt, discretized equation of motion in 
frequency domain can be written as below [3]: 

K[ ] p{ }+ iω C[ ] p{ }−ω2 M[ ] p{ }= iωρv0 W{ }.      (1) 

In that equation, [K], [C] and [M] respectively represent the 
acoustic stiffness, dissipation and mass matrices; {p} is the 
sound pressure vector; also i, ω, ρ, v0 and {W} respectively 
represent the imaginary unit, angular frequency, air density, 
particle velocity and distribution vector. The acoustic 
element matrices, [K]e and [M]e, that construct global 
matrices in the Eq.(1) are given by the equations in the 
literature [3]. As for the damping matrix, [C]e, it can be 
defined as below: 

C[ ]e
= 1

c
1
zn′ e 

∫ N{ } N{ }T
dS .    (2) 

Therein, c and zn are the sound velocity and normal surface 
impedance. 

2.2 Direct frequency response analysis 

The Eq.(1) can be rewritten as 
A[ ] p{ }= f{ }.    (3) 

The coefficient matrix [A] becomes a complex sparse 
symmetric matrix, i.e. a non-Hermitian matrix. The {p} can 
be directly obtained by applying a direct solver or an 
iterative solver onto the Eq.(3). The solver employed here is 
COCG method [5], which is the effective iterative solver for 
the authors' FEM [6]. 

2.3 Modal frequency response analysis 

The modal superposition technique by use of FEM becomes 
simpler when the dissipation is small enough to ignore 
modal couplings. In this case, simple eigenmodes and 
eigenvalues derived by solving a MK-type eigen equation 
can be utilized to the modal superposition technique. So, the 
following equation was tentatively solved to obtain 
eigenvalues, ωn and eigen-vectors, {φn} : 
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K[ ]−ωn
2 M[ ]( ) φn{ }= 0 .    (4) 

With the ωn
2 and {φn}, {p(ω)} in the steady-state condition 

can be obtained by modal superposition technique as follows 
(Modal_MK): 

p ω( ){ }= αn
n=1

N

∑ φn{ },   (5) 

where, 

αn =
φn{ }Τ

F{ }
ωn

2 −ω 2 + i2hnωnω( )Mn

,  

hn =
φn{ }Τ

C(ωn )[ ] φn{ }
2ωn Mn

, Mn = φn{ }Τ
M[ ] φn{ }.      (6) 

The damping matrix, [C(ω)] can be decided by putting the 
impedance value at the frequency ωn into the Eq.(6). 
 
On the other hand, if the dissipation is not small enough, the 
following MCK-type eigen equation can be utilized: 

ωn
2 M[ ]+ ωn C[ ]+ K[ ]( ) φn{ }= 0.  (7) 

The Eq.(7) can be rearranged as follows, 

ωn D[ ]+ E[ ]( ) ψn{ }= 0 ,  (8) 

where, 

D[ ]=
C M

M 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,   E[ ]=

K 0

0 −M

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,   ψn{ }=

φn

iωnφn

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

.    (9) 

3 Comparison between direct and 
modal frequency response analyses 

3.1 Problem and FE settings 

The sound field of a cavity with the volume of 10 m3 (Fig. 
1) is analyzed by direct analysis and by two modal 
analyses, i.e. Modal_MK and Modal_MCK. The sound source 
is assumed to radiate a volume velocity of iωv0 = 1 m3/s2 at 
the corner point shown in the Fig. 1. Two kinds of 
boundary conditions are assumed as follow: 
- cond. 1: the absorbent material exists on the floor shown 
in Fig. 1 and other boundaries are assumed to be typical 
concrete walls.  
- cond. 2: all the boundaries are assumed to be typical 
concrete wall. 
In the paper, the surface impedance, zn, corresponding to 

abortion coefficient (α) equals to 0.01 was given as those of 
concrete walls assuming that the imaginary part of zn is 
zero. In cond. 1, four absorbent settings are assumed for the 
absorbent material put on the floor in the room (Table 1). 
 
The finite element employed through this paper is the 
hexahedron 27-node isoparametric acoustic element [3] 
using the spline function for the interpolation function. 
With the element, an array of element is set to (X, Y, Z) = 
(10, 10, 8) which satisfies "wave-length" / "nodal-distance" 
> 4.4 at all frequencies in the following analyses. The DOF 
becomes 7,497.  
 

3.2 Results and discussions 

First of all, in case of cond. 1, comparisons among sound 
pressure levels of all nodes, {L}, obtained by direct 
analysis, Modal_MK and Modal_MCK, are carried out. The 
sound pressures within the 1/3 octave band centered at 
frequency 250 Hz were computed at 1 Hz intervals, and 
square sound pressures of those were integrated. 
 
Figure 2 shows the mean residuals, D , between {L} 
obtained by Modal_MK and {L} obtained by Modal_MCK; 
those between {L} obtained by direct analysis and {L} 
obtained by Modal_MCK; those between {L} obtained by 
direct analysis and {L} obtained by Modal_MK. The D  
between Modal_MK and direct-analysis/Modal_MCK at a 
higher absorption is larger. In contrast, the D  between 
direct analysis and Modal_MCK are less than 1.0 dB 
irrespective of boundary conditions.  
 
Comparisons between sound pressure level distributions on 
the XZ-plane (Y = 1.0 m) obtained by direct analysis and 
those obtained by Modal_MCK are shown in Fig. 3 when the 
αs of absorbent material equal 0.2 and 0.8. As a reference, 
those obtained by Modal_MK are illustrated in the figure. It 
is confirmed that the sound pressure levels obtained by 
direct analysis correspond to those obtained by Modal_MCK 
regardless of boundary conditions. 
 
Next, {L} obtained by direct analysis are compared with 
those obtained by modal analysis in the case of cond. 2, i.e. 
the sound field without absorbent material. The sound 
pressures within the 1/3 octave band centered at frequency 
100-315 Hz were computed at 1 Hz intervals, and square 
sound pressures of those were integrated. 
 
Figure 4 shows comparisons between sound pressure level 

Z

Y

2.0m
2.5m

2.0m

●Sound 
source

X
Sound 
absorbing
surface

Fig. 1. Schematic drawing of oblong room 
with a finite element mesh division 

Table 1. Normal impedance 
zn of the floor. 

α     (zn[Re], zn[Im]) 
0.2      (0.65, -3.20) 
0.4      (0.60, -1.86) 
0.6      (0.60, -1.19) 
0.8     (0.62, -0.69)

Fig. 2. Mean residuals of sound pressure levels 
among direct analysis (Direct) and modal 

analyses: Modal MK and Modal MCK (cond.1)
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distributions on the XZ-plane (Y = 1.0 m) obtained by direct 
analysis and those obtained by two kinds of modal analyses 
at 250 Hz. The sound pressure levels obtained by direct 
analysis are in good agreement with those obtained by both 
modal analyses. The D  between {L} obtained by direct 
analysis and those obtained by both modal analyses is less 
than 0.1 dB.   
 
Here, frequency responses obtained by direct analysis are 
compared with those obtained by two kinds of modal 
analyses in the case of cond. 2. Figure 5 shows frequency 
responses ranging from 88 Hz to 355 Hz on a point which 
is (0.5, 1.0, 0.5) obtained by direct analysis and two kinds 
of modal analyses. Triangular marks (∆) illustrated in the 
figure denote eigen frequencies. Results obtained by direct 
analysis are in good agreement with those obtained by both 
modal analyses, even if the analysis is carried out at the 
frequency close to a eigen frequency. 
 
For reference, memory required for Modal_MCK was 4.6 
GB, and that of Modal_MK was 965 MB whereas that of 
direct analysis was 7.9 MB. It is concluded that the direct 
analysis can be regarded as a reasonable one for the 
computation to obtain a sound pressure distribution in a 
cavity. 

4 Investigation on measurement of a 
mean sound pressure levels in a room 

4.1 Problem and FE settings 

A mean sound pressure level is utilized for several ISO 
standards and the Japanese Industrial Standards for 
acoustics. There remain issues caused by differences of 
sound fields or diffuseness in rooms used for the 
measurements [7]. On the other hand, the authors presented 
that data obtained by the finite element analysis were 
applied to calculate descriptors of diffuseness of sound 
fields in regularly and irregularly shaped reverberation 
rooms and showed effectiveness of the method for 
quantitative evaluations of the sound fields [8]. In this 
chapter, difference among mean sound pressure levels 
caused by combinations of sampling points is investigated 
by combining the analysis and Monte Carlo method in a 
room with absorptions on boundaries. 
 
An experimental room (ER), volume of which is about 50 
m3, is analyzed by the direct frequency response analysis in 

Fig. 3. Comparisons of sound pressure levels among direct analysis (Direct) and two kinds of modal analyses, i.e. 
Modal_MK and Modal_MCK  (cond.1); (a) α of absorbent material equals 0.2, (b) α of absorbent material equals 0.8 

Fig. 4. Comparison of sound pressure levels among direct analysis (Direct) and two kinds of modal analyses, i.e. 
Modal_MK and Modal_MCK  (cond.2) 

Fig. 5. Comparison of frequency responses among direct analysis (Direct) and two kinds of modal analyses, i.e. 
Modal_MK and Modal_MCK  (cond.2) 

Acoustics 08 Paris

2308



 

this chapter, and figure 6 shows a sound source and 
absorptions locations; Type 0: no absorption boundary (all 
surfaces are concrete wall), Type 1: an absorption boundary 
is located on a wall, Type 2: four absorption boundaries are 
located on two walls, Type 3: eight absorption boundaries 
are located on three walls and a ceiling. Area of the 
absorption boundary in Type 1 ~ Type 3 is same and 
absorption coefficients of the boundaries are supposed for 
the room’s reverberation time (T60) to become 1.2 s or 1.9 s 
calculated by the Sabine’s formula. The surface impedance, 
zn, corresponding to absorption coefficient (α) equals to 
0.01 was given as those of concrete walls assuming that the 
imaginary part of zn is zero. 
 
An array of the element is set to (X, Y, Z) = (10, 12, 10) 
which satisfies "wave-length" / "nodal-distance" > 4.4 at all 
frequencies in the following analyses. The DOF becomes 
11025 and the frequency range is decided referring to ISO 
140-3 Annex C. 

4.2 Frequency characteristics of mean 
sound pressure levels 

In ISO 140-3, positions and the number of sampling points 
for averaged sound pressure levels should be decided by 
followings: (a) distanced from boundaries of a room and 
from diffuser more than 0.7 m; (b) distanced from sound 
sources more than 1.0 m; (c) required more than five points 
which are distributed spatially uniformly; (d) distanced 
from each other more than 0.7 m. Thus, using sound 
pressure levels obtained by the authors' FE-analysis, 
averaged sound pressure levels are calculated by seven 
steps below based on the Monte Carlo method: 

1. Decide the number of sampling points (Ns). 
2. Decide the number of combinations of sampling points 

(Nc). 
3. Divide the space that satisfies both (a) and (b) into Ns 

subspaces. 
4. Statistically sample one of the points, sound pressure 

levels of which are obtained by the FE-analysis, in a 
subspace. 

5. Repeat step 4. for all subspaces (total Ns points are 
sampled). 

6. Calculate averaged sound pressure levels by a 
following equation, if all the Ns points are distanced 
from each other more than 0.7 m; 

Ln =10log
1
N

10L p _ k f( )/10

k=1

Ns

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,    (10) 

where LP_k(f) is LP(f) of k (k = 1, 2, .... Ns) and n is count 
of calculation of Eq. (10) (n = 1,2,......, Nc).   

7. Return to step 4 until the n reaches Nc. 
 

A difference between Ln and Lall, which is a mean sound 
pressure level of all FEM-nodes in the space, which 
satisfies the both (a) and (b), is calculated by the follow;  

 Dn = Ln − Lall .   (11) 
Figure 7 shows relative frequency (RF %) distributions of 
Dn at 100 Hz in case that Ns = 5 and T60 = 1.9 s. The 
frequencies are counted every 0.1 dB width from -3.0 dB to 
+3.0 dB and cumulative frequencies are counted under -3.0 
dB and over +3.0 dB. It is shown that the RF of Dn around 
0.0 dB in Type 2 and Type 3 are higher, i.e. the number of 
Ln near the Lall is greater, than those in Type 1. To evaluate 
the difference among mean sound pressure levels caused by 
combinations of sampling points, cumulative relative 
frequency of Dn in case that |Dn| < 0.5 dB (CRF0.5 %) is 
calculated. Based on former paper [9], the number of monte 
carlo trials (Nc) is assumed to be 106. 

4.3 Results and discussions 

In ISO 140-3, the reverberation time of an experimental 
room should be within the range of one-two seconds. Thus, 
relationships between differences among mean sound 
pressure levels caused by combinations of sampling points 
and the reverberation times of the room are investigated. 
 
Figure 8 shows relationships between the CRF0.5 and 
absorption conditions at 100, 125, 160 and 200 Hz in case 
that Ns = 5. It is confirmed that CRF0.5 in the room with 
absorptions (Type 1 – 3) are larger than those in the room 
without absorptions (Type 0) at 100 Hz regardless of the 
absorption conditions and T60. On the other hand, CRF0.5 
in the room with absorptions are smaller than those in the 
room without absorptions at 160 and 200 Hz regardless of 

      (a) Type 1          (b) Type 2          (c) Type3 
Fig. 7. RF distributions of Dn at 100 Hz in case that Ns = 5 and T60 = 1.9 s.: (a) Type 1; (b) Type 2;  (c) Type3 

(a) Type 0         (b) Type 1   (c) Type2    (d) Type3 
Fig. 6. A sound source and absorptions locations: (a) Type 0; (b) Type 1;  (c) Type 2;  (d) Type 3 (Unit [m]) 
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the absorption conditions and T60. At 125 Hz, CRF0.5 in 
Type 3 is larger then those in Type 0 though those in Type 
1 and Type 2 are smaller than those in Type 0 regardless of 
T60. 
 
Relationships between CRF0.5 and absorption conditions at 
100, 125, 160 and 200 Hz in cases that Ns = 10 are shown 
in Fig. 9. It is confirmed that CRF0.5 in case that Ns = 10 
are larger than those in case that Ns = 5 regardless of the 
frequency and the boundary condition. At 100 Hz, CRF0.5 
in Type 3 is larger then those in Type 0 though those in 
Type 1 and Type 2 are smaller than those in Type 0 
regardless T60. CRF0.5 in the room with absorptions are 
smaller than those in the room without absorptions at 125, 
160 and 200 Hz regardless of the absorption conditions and 
T60. It is noted that adjustments of reverberation time of the 
experimental room above 125 Hz increase differences 
among measurement results of mean sound pressure levels. 

5 Summary 

Sound pressures obtained by finite element method with the 
technique to solve the system of linear equations directly 
(direct analysis) are compared with those using modal 
superposition technique (modal analysis) under five kinds 
of absorption conditions. Results obtained by direct 
analysis are in good agreement with those obtained by 
modal analysis regardless of absorption conditions.  It is 
concluded that the direct analysis can be regarded as a 
reasonable one for the computation to obtain a sound 
pressure distribution in a room.  
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