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In this research, we discuss the speaker recognition using the Kohonen’s feature map. The model for each 

speaker consists of a feature map. Two kinds of feature vector MFCC and FTTSS of each speaker are used for 

training the map, and they are quantized into a specific vector on the feature map. The feature FTTSS is used to 

develop a robust speaker recognition system under noisy condition. Using the map, we conduct speaker 

recognition(identification and verification) based on vector quantization (VQ) distortion. In particular we 

examine dependency of recognition rates on number of utterance words for recognition using the administrative 

division name of Japan as the utterance words. According to speaker identification experiments,  increasing the 

number of words in recognition more than three words, this system can attain a correct rate of  100% for input 

speech of 40 speakers. We also examine the influence of the difference of uttering period. Moreover, we show 

the results of speaker recognition by using Hidden Markov Model (HMM) for comparison with VQ method.  

1 Introduction 

Recently, the problem of the information security often 

becomes important in an information-oriented society. 

Various methods are proposed for the personal 

identification. There is a problem that the reliability of  

personal identification by speech is lower than other 

biometric identification such as fingerprints and blood 

vessels  while it is easy. In this research , aiming to raise the 

reliability of the personal identification by speech, we 

examine dependency of recognition rate on number of 

words for speaker recognition using VQ. Two kinds of 

feature MFCC and FTTSS are used. The former is a 

conventionally used one and the latter is a noise-robust one  

proposed by the present authors. Kohonen’s self-organizing 

feature map is used for the VQ, and VQ distortion is used 

as a measure for identification.  

2 The Kohonen Feature Map 

Kohonen’s self-organizing feature map is a two-layered 

network that can organize a topological map from a random  

starting point. The resulting map shows the natural 

relationships among the patterns that are given to the 

network. The network combines an input layer with a 

competitive layer of processing units, and is trained by 

unsupervised learning. All interconnections go from the 

first layer (input layer) to the second (competitive layer); 

the two layers  are fully interconnected, as each input unit is 

connected to all of the units in the competitive layer. Figure 

1 shows this basic network structure. 

 

 Fig. 1 The basic network structure for the Kohonen feature 

map[4] 

When an input pettern is presented, each unit in the first 

layer takes on the value of the corresponding entry in the 

input pattern. The second layer units then sum their inputs 

and compete to find a single winning unit. Each 

interconnection in the Kohonen feature map has an 

associated weight value. The initial state of the network has 

randomized values for the weights. The weight values are 

updated during the training of the network.  Neighborhood 

preservation from input layer space to output competing 

space is an essential property of the Kohonen feature map.  

3 FTTSS 

The typical feature used to recognize speech includes Mel 

LPC cepstrum and FFT Mel cepstrum, etc. However, the 

recognition rate decreases remarkably when speech is 

recognized by using these feature under noisy condition. In 

previous paper[6], we proposed a new feature based on 

power spectral derivatives to develop a robust speech 

recognition system under noisy condition. The proposed 

feature is calculated by the following three steps: 

(1) Converting the power spectral derivative at each 

frequency to the ternary scale {+1, 0, -1} for 64 

channel frequencies in mel-scale, 

(2) Smoothing the ternary values in the time domain at 

each frequency, 

(3) Inverse Fourier transforming the smoothed values in 

the frequency domain at every 10ms. 

The resultant time sequences of Fourier coefficients are the 

proposed feature, which we call “mel-frequency Fourie 

Transform of Ternarized Spectral Slope (FTTSS)”.  

3.1 PSD Filter 

Let )( cn fS be short time power spectrum of signal nx , 

where n  is temporal parameter and cf is frequency.  
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Where nw is a time window function, bf determines the 

length of the window (or the band width of corresponding 

spectral window) and T is the sampling interval of input 

speech. Power spectral derivative )( cn fS ′ can be 
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calculated with using PSD filter proposed by the author[1] 

such as 

               )}1()0(Im{2)( ∗
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The block diagram of PSD filter is shown in Figure 2. The 

transfer function of the components  are as follows: 

                     
11

1
)(

−
−

=
az

zH A
                           (3) 

                    
1

1

1
)(

−

−

−
=

az

az
zH B

                          (4) 

 
Fig. 2 Block diagram of PSD filter 

3.2 Procedure for extracting FTTSS 

A bank of N-channel PSD filters is constructed. Parameters 

cf  and bf  of PSD filters are set to equal resolution on mel 

scale and 100Hz, respectively. The output of each PSD 

filter is ternarized to -1, 0 or +1 according to the difference 

between the value of power spectral  derivative and the 

threshhold. The ternarised value of channel c  is smoothed 

by a second order low pass filter, and is denoted by symbol 

cA . Accidental variations by noise or glottal volume flow 

is expected to be decreased by smoothing operation. The 

discrete Fourier transform(DFT) of the N –channel 

smoothed values is calculated every 10ms in order to 

decrease information quantity such as in the case for MFCC. 
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The parameter kF   is referred to FTTSS. The procedure 

for extracting FTTSS is illustrated in Figure 3. Channel size 

N  is set to 64 in the present experiment. Total 30-

dimensional parameters including the FTTSS kF  up to 14-

order (K = 14), logarithmic power P  and each delta value  

are used for recognition. These parameters are passed 

through a band pass filter for extracting effective 

modulation frequency components.   

 

 

Fig. 3 Extraction process of FTTSS by PSD filter bank 

4 Speech data and analysis condition 

The speech data uttered by 40 Japanese male speakers is 

used. Each speaker utters 50 words (the administrative 

divisions name etc. of Japan) five times for each. These 

speech data were sampled at 16 kHz and 16bit. Moreover, 

speech data uttered at two different time (after one month 

and one year) are used for five speakers among these. We 

carry out experiment by extracting Mel-frequency spaced 

filter-bank cepstral coefficients (MFCC) and FTTSS from 

these speech data, and using it. The feature extraction 

condition is shown in Table 1. 

       

 

Feature MFCC FTTSS 

Number of 

dimension 

30       
(MFCC1-14,  
log Pow,      

ΔMFCC1-14, 

Δlog Pow) 

30       
(FTTSS1-14,  
log Pow,      

ΔFTTSS1-14,  

Δlog Pow) 

Sampling 

frequency 
16kHz 16kHz 

Size of frame/ 

equivalent 

frequency 

resolution 

25ms 100Hz  

Frame shift /  

extraction rate 
10ms 10ms 

Table 1 Condition for feature extraction 

5 Experiment 

The feature extracted as shown in Table 1 is used as an 

input vector to the Kohonen feature map. The Kohonen 

feature map is trained by 10000 utterances ( 50 speakers 

and 200 utterances (50 words × 4 utterance) of each 

speaker). The network has 30 input units and a 20×20 grid 

of output units. The distance(VQ distortion) of each 

speaker's feature map is calculated by using one utterance 

of the remainder, and the speaker is recognized.  

5.1 Speaker identification experiment 

The distance(VQ distortion) between input speech and each  

speaker's feature map is calculated, and the speaker number 

in the feature map which shows the minimum distance is 

assigned as identified person. The case where the person in 

question is correctly identified is classified to be a correct 

answer. We  examine the dependency of recognition rate on 

repetitions of training the map and number of words used 

for   recognition. 
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5.2 Speaker verification  

After ID that specifies a speaker and input speech are given 

to map, the distance between the feature map of the 

specified speaker and the input speech is calculated. The 

speaker is dismissed as others if the distance is above a 

specified threshold, or accept as the person in question if it 

is below the threshold. The system is evaluated by the 

variation of the threshold and the error rate especially by  

crossover error rate (Error rate that  person in question 

dismissal rate P(N|s) equals to pretender acceptance rate 

P(S|n) ). 

5.3 Influence of utterance in different 

period  

In general, a high recognition rate is obtained when speech 

data for training and for recognition is uttered in 

simultaneous period, and the performance of the 

recognition system falls when speech are uttered in  

different period. Therefore, we carry out speaker 

recognition experiment for 5 speakers using the speech data 

of one month and one year after the training speech has 

been collected, and examine the influence by the time 

difference  on recognition rate.  

5.4 Comparison of VQ with using HMM 

To compare speaker recognition experiment using VQ with 

other method of recognition, we carry out speaker 

recognition using HMM. The structure of HMM is left to 

right model (L-R HMM) and ergodic model (EHMM) of 

Gaussian single mixture output probability. 

5.5 Comparison of FTTSS with MFCC 

under noisy condition   

In this experiment, speech data uttered by 10 speakers are 

used. Noise added speech data for evaluation was generated 

by adding clean speech data with car noise, crowd noise, 

workstation noise, and white noise at Signal-to-Noise ratio 

(SNR) of 10dB. These noises except white noise are 

obtained from JEIDA.   Using the noisy speech data, we 

carry out the speaker identification experiment to confirm 

noise robustness of FTTSS.        

6 Results and discussion  

6.1 Speaker identification  

Figure 4 shows recognition rates of the speaker 

identification using one word (one utterance) when 

repetitions of training are increased from 10 to 500 times  

(40 speakers , using speech uttered in simultaneous period 

of training). Figure 5 shows the recognition rate when the 

speaker identification is carried out using the distance sum  

of two words and three words. According to figure 4, 

recognition rates become high with an increase in 

repetitions of training. Moreover, according to figure 5 the 

recognition rate at which the mistake is very few in using 

two words was obtained. Using three words, this system 

can correctly recognize all speakers of the input speech. 

When two or more words were used, the average 

recognition rate of the combination of all words was used 

as a recognition rate. 

6.2 Speaker verification experiment  

Speaker verification experiment using the feature map of 

500 repetitions of training and the combination  distance of 

two or more words (each one time utterance) was carried 

out. Figure 6 shows the change of   P(N|s) and  P(S|n) when 

the threshold is changed  (using the total  distance of three 

words ). Moreover, to evaluate the speaker verification 

performance with increasing number of words, numerical 

values of P(N|s) and P(S|n) are shown in Table2. The 

improvement of the speaker verification  performance with 

an increase in the number of words was  confirmed though 

the threshold that both  P(N|s) and P(S|n) become 0  was 

not obtained. 

6.3 Influence of utterance in different 

period  

Figure 7 shows the result of speaker identification 

experiment with speech uttered in different period.  In the 

speaker identification, the recognition rate of 100% was 

obtained even by one word. On the other in case of using 

more than five words, about 7% recognition rate decreased 

because of the difference of period (one year). The result of 

the speaker verification experiment is shown in Table 3. In 

speaker verification, the crossover error rate has increased 

5.5% and  system deterioration by the difference of period 

appears greatly even when ten words are used. 
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Fig. 4 Dependency of recognition rate on repetitions 

of training 
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Fig. 5 Dependency of recognition rate on number 

of words 
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Fig.6 Threshold versus error rate (using 3 words) 

 

 

 

 P(N|s) (%) 

Number of words 3 5 10 

P(S|n):0％ 58.3 28.2 10.9 

P(S|n):1％ 2.8 0.8 0.2 

P(S|n) = P(N|s) 1.7 0.9 0.5 

 

Table 2 Error rate of speaker verification 
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Fig. 7 Speaker recognition with speech uttered in 

different period 

 

 

 Difference of period (months)  

 0 1 12 

Number of 

words 

Crossover error rate (%)             

(P(N|s) = P(S|n)) 

3 0.07 3.5 9.5 

5 0.005 1.8 7.5 

10 0.0002 0.8 5.5 

 

Table 3  Speaker verification with speech uttered in 

different period 

 

 

6.4 Comparison of speaker recognition 

with using HMM 

Dependency on state number and model topology are 

calculated on the same condition as VQ (training : 200 

utterances, recognition : 1 utterance). Because considerably 

low recognition rates were obtained in speaker 

identification using L-R HMM, only recognition rates using 

EHMM are shown in Figure 8. The improvement of the 

recognition rate can be confirmed by increasing the number 

of states of HMM. Dependency on state number and model 

topology are calculated on the same condition as VQ 

(training : 200 utterances,  recognition : 1 utterance).  

Improvement of the recognition rate can be confirmed by 

increasing the number of states of HMM. 

6.5 Comparison of speaker identification 

using FTTSS and MFCC under noisy 

condition 

Figure 9 shows the result of a comparison of speaker 

identification using FTTSS and MFCC under noisy 

condition.  At clean speech, the recognition rate of MFCC  

is higher than FTTSS.  However, under every kind of noisy 

condition, the recognition rate by FTTSS is higher than 

MFCC. The difference appeared to be remarkable 

especially in case of the white noise. 
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Fig. 8 Comparative result of VQ and HMM 
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Fig. 9 Recognition rates for noisy speech data(SNR 10[dB]) 
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7 Conclutions 

The purpose of present research was to confirm the 

effectiveness of using VQ by Kohonen feature map to 

speaker recognition. Features MFCC and FTTSS are used 

for recognition. The feature FTTSS is used to develop a 

robust speaker recognition system under noisy condition. 

From the experiment we have confirmed that the 

recognition performance using VQ by Kohonen feature 

map is better than using HMM and the recognition rates  

increase by increasing repetitions of training and increasing 

the number of words for recognition. Moreover, in speaker 

verification experiment using FTTSS, we have confirmed 

noise robustness of FTTSS compared with MFCC. 

Though 200 utterances (50 words ×4 utterances ) were 

used to learn in this research, it is necessary to examine the 

use of continuous of speech sentences than the word 

utterance in future research. Examining dependency of the 

threshold on difference of period between training and 

recognition in the speaker verification is also necessary.  
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