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Basing on the effective-medium approach, we calculate and analyze the dispersion spectrum of coherent
SH waves in a halfspace containing random and uniform distribution of cylindrical cavities within finite
depth beneath the surface. The scattering-induced dispersion and attenuation are coupled with the effect
of a surface waveguide filled with scatterers. As a result, the obtained spectrum bears certain essential
particularities in comparison with the standard Love-wave pattern. Simple analytical estimates enable a
direct evaluation of the concentration of scatterers from the dispersion data. The results present a first
step towards describing coherent wave propagation in solids with multi-cracked surface damage.

1 Introduction

The paper is concerned with the shear horizontal (SH)
wave propagation in an isotropic halfspace containing
multiple scatterers near its free surface. At this first
stage of the study which is ultimately aimed at describ-
ing multi-cracked solids, a relatively simple case of scat-
terers represented by cylindrical cavities is considered.
The cavities reduce the velocity and thus create a sur-
face waveguide. An intrinsic frequency dispersion due to
the scattering is superposed with that due to the wave
trapping beneath the surface. An evident analogy with
the Love waves invites using a dynamic-homogenization
approach recently developed in [1]. It replaces the ac-
tual material with scatterers by an appropriate ’effec-
tive’ one, whose elastic parameters with respect to the
coherent SH wave motion are spatially constant but fre-
quency dispersive and complex-valued. Basing on this
approach, we calculate the dispersion spectrum of SH
waves in a given halfspace and examine its particular
properties.

2 Background

Suppose that mutually parallel cylindrical cavities of the
radius a are distributed randomly and uniformly un-
der the free surface of an isotropic halfspace up to a
certain depth h (� a), see Fig. 1. The concentration
φ of cavities over the layer of thickness h is assumed
small. In view of the coherent SH wave propagation
with frequency ω in the direction orthogonal to the axis
of cavities [3, 4], the given medium may be seen as a
transversely isotropic homogeneous layer of the effective
material bonded to a substrate of the matrix material.
Denote the density and the shear modulus of the matrix
by ρ2 and μ2. The density ρ1 and the shear modulus μ1

of the layer depend on the concentration φ and on the
scattering dispersion parameter

ω̃ = ωs2a, (1)

where s2 =
√

ρ2/μ2 is the slowness of the bulk shear
wave in the matrix material. According to [1], this de-
pendence is as follows:

ρ1 (ω̃) = ρ2 (1− φ) [1 + φr (ω̃)] ,

μ1 (ω̃) =
μ2

1 + 2φ
[1 + φm (ω̃)] ,

(2)

where r (ω̃) and m (ω̃) are certain complex-valued func-
tions, which turn to zero along with their first deriva-
tives at ω̃ = 0. They are defined in full in [1]. To the
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Figure 1: Geometry of the problem.

leading order in low frequency such that ω̃2 ln ω̃ � 1,

r(ω̃)=− 1
2(1−φ) ω̃

2
{

[ln ω̃+O(1)]+i
[
−

π
2 +O

(
ω̃2 ln ω̃

)]}
,

m(ω̃)= 1
1+2φ ω̃2

{
[ln ω̃+O(1)]+i

[
−

π
2 +O

(
ω̃2 ln ω̃

)]}
,

(3)
where the next-order terms O (·) in r (ω̃) and m (ω̃) are
different. Note that Im r (ω̃) > 0 and Imm (ω̃) < 0 in
agreement with the sign of dissipation.

By Eqs. (2) and (3), the complex-valued slowness of
shear bulk wave in the layer s1 (ω̃) =

√
ρ1 (ω̃) /μ1 (ω̃)

is

s1 (ω̃) = s2

√
(1− φ) (1 + 2φ)

1 + φr (ω̃)

1 + φm (ω̃)
. (4)

For small ω̃, it follows that

c1(ω̃)=c2
1√

(1− φ) (1 + 2φ)
×{

1 +
3φ

4 (1− φ) (1 + 2φ)
ω̃2 [ln ω̃ + O (1)]

}
,

Im s1(ω̃)=s2
3πφ

8
√

(1− φ) (1 + 2φ)
ω̃2

[
1 + O

(
ω̃2 ln ω̃

)]
,

(5)
where c2 = s−1

2 and c1 (ω̃) = Re
[
s−1
1 (ω̃)

]
are the phase

velocities. Obviously the layer and substrate (matrix)
parameters differ in the measure of concentration of
scatterers φ, so the overall effect in question is weak
in the measure of small φ.

3 Overview of the dispersion spec-

trum

The guided waves are sought in the form uz (x, y) =
U (y) exp [iω (sxx− t)] , where the frequency ω is kept
real. Taking into account the traction-free condition
at the upper surface and the continuity at the bonded
interface yields the dispersion equation for s2

x,

i tan

(
ωh

√
s2
1 (ω)− s2

x

)
=

μ2

μ1 (ω)

√
s2
2 − s2

x

s2
1 (ω)− s2

x

. (6)
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In contrast to the standard Love-wave case (e.g. [2]), the
layer parameters s2

1 and μ1 are dispersive and also com-

plex, hence the resulting dispersion branches s
(n)
x (ω),

n = 0, 1, ..., have real and imaginary parts. The ap-
propriate (’physical’) solutions decay into the depth of
the substrate and along the propagation direction, thus

satisfying the conditions Im s
(n)
y2 = Im

√
s2
2 − s

(n)2
x ≥ 0

Im s
(n)
x ≥ 0 for Re s

(n)
x > 0 and the axes X, Y as in

Fig. 1. Note a difference with a leaky wave, whose hori-
zontal decay is accompanied by increase into the depth.
It is worth pointing out to this end that the Love-wave
dispersion equation with real material constants admits
only real slowness solutions for real ω, so that the com-

plex branches s
(n)
x (ω) in hand arise as a perturbation of

just these real solutions (it is in contrast with the case
of Lamb waves admitting complex conjugated slowness
branches for non-absorbing plates).

Figs. 2 and 3 show the calculated spectrum for two
different values of concentration of cavities with the ra-
dius a = 0.06mm, which are distributed within the layer
of thickness h = 1 mm in the aluminum matrix with
ρ2 = 2.7 g/cm3 and μ2 = 26.45 GPa. The results are
displayed in terms of the phase velocity and the atten-
uation

c(n) = Re
(
1/s(n)

x

)
, α(n) = ω Im s(n)

x , (7)

which are plotted as functions of ω̃ = ka and of ωh. The
dashed line is the phase velocity c2 for the matrix mate-
rial (substrate), the dotted lines are the phase velocity
c1 (ω) and the attenuation α1 (ω) = ω Im s1 of the shear
bulk wave for the effective layer material.

4 Discussion

4.1 Fundamental branch

It is noted that the ’waveguiding’ dispersion governed
by ωs0h is h/a times stronger than that due to the scat-
tering dispersion parameter ω̃. Given h/a� 1, the fun-
damental phase-velocity curve c(0) (ω) for small ω̃ can
be approximately defined by via confining in Eq. (6)
the effective parameters s2

1 (ω) and μ1 (ω) by their stat-
ically averaged values s2

1 (0) = s2
2 (1− φ) (1 + 2φ) and

μ1 (0) = μ2/ (1 + 2φ) , see Eq. (2). For another long-

wave scale which is (ωhs2)
2
� 1, the leading order of

an explicit expansion gives

c(0) (ω) ≈ c2

[
1−

1

2
(ωhs2)

2 φ2 (1− 2φ)
2

(1 + 2φ)
2

]
. (8)

Both long-wave approximations are shown by gray lines
in Figs. 2a, 3a and the insets in there.

Starting from high enough frequency, the fundamental
branch c(0) (ω) trails above the bulk-wave velocity in
the layer c1 (ω) . This is as usual. However, for the
case in hand c1 (ω) is dispersive. According to Eq. (5)1,
it reaches minimum at about the minimum point ω̃ =
e−1/2 ≈ 0.6 of the function ω̃2 ln ω̃ and then curves up-
wards. Hence so does the branch c(0) (ω) .

(a)

ω μ

ω μ

(b)

ω μ

α 

ω μ

Figure 2: The branches of (a) phase velocity c(n) (ω)

and (b) attenuation α(n) (ω) for the concentration of
scatterers φ = 4.52%. The notations are explained in

the text.

Due to h/a � 1, the attenuation curve α(0) (ω) corre-
sponding to the fundamental branch is close from below
to the attenuation α1 (ω) = ω Im s1 (ω) of shear bulk
waves in the layer. For ω̃2 ln ω̃ � 1, the latter is ap-
proximated through Eq. (5)2, so that

α(0) (ω) � α1 (ω) ≈
3πφω̃3

8a
√

(1− φ) (1 + 2φ)
, (9)

see gray lines in the zoomed insets to Figs. 2b and 3b.

4.2 Higher-order branches

Scattering-induced dispersion and attenuation under-
lie an unusual behavior of the higher-order branches
(n > 0). Commonly the origin points (cutoffs) of higher-
order velocity curves simply correspond to the grazing
propagation in the substrate and hence all lie on the

line c(n)
(
ω

(n)
c

)
= c2, where ω

(n)
c denotes the cutoff fre-

quency. In the present case, it is not so.

We recall that a formal solution s
(n)
x (ω) of the (complex)

dispersion equation (6) admits either signs of the imag-

inary parts of s
(n)
y2 (ω) and s

(n)
x (ω) , and it is their pos-

itiveness which selects the ’physical’ part of the branch

s
(n)
x (ω) . For a purely elastic substrate (with real s2),

Im s
(n)
y2 and Im s

(n)
x turn to zero simultaneously. Thus

the cutoff points (ω
(n)
c , s

(n)
x

(
ω

(n)
c

)
) of the higher-order

branches are defined as the points of

’nonphysical/physical’ crossover Im s
(n)
x

(
ω

(n)
c

)
= 0,

which implies that c(n)
(
ω

(n)
c

)
> c2. That is why the

cutoffs lie above the substrate velocity c2.
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Figure 3: The branches of (a) phase velocity c(n) (ω)

and (b) attenuation α(n) (ω) for the concentration of
scatterers φ = 10.18 %.

The onsets of a few first higher-order branches shown in
Figs. 2 and 3 can be approximately related by a simple
expression

ωh Re

√
s2
1 (ω)− s

(n)2
x (ω) ≈ πn, (10)

which implies a small imaginary part of the left-hand

side of Eq. (6). For the cutoff values ω
(n)
c and c

(n)
c ≡

c(n)
(
ω

(n)
c

)
, Eq. (10) reduces to

ω(n)
c h

√
Re s2

1 −
1

c
(n)2
c

≈ πn, (11)

The cutoff velocity c
(n)
c in Figs. 2a and 3a increases with

growing branch number n; however, it can be shown
to reach a plateau for greater n which are beyond the
displayed frequency band.

In turn, the attenuation branches α(n) (ω) for n > 0
start from zero value at the successive cutoff frequencies

ω
(n)
c and then increase in a similar manner. Accordingly

to Eq. (10), each next attenuation branch lies below the
preceding one, while the distance between them at a
fixed frequency ω reduces with growing ω, see Figs. 2b
and 3b.

5 Conclusions

The effective-medium approach has been used for cal-
culating the spectrum of coherent SH waves in a halfs-
pace which contains random distribution of cylindrical
cavities within finite depth beneath the surface. It is
shown that the effect of the dispersion and attenuation
caused by the scattering leads to some unusual spectral

features, which are different from the standard pattern
of Love-wave spectrum in coated elastic solids. Simple
analytical estimates enable a direct evaluation of the
concentration of scatterers from the dispersion data.
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