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Previous work discusses the use of normal mode theory as a means of determining the range of a contact from a 
Lloyd’s mirror interference pattern.  This method relies on the long-range interference pattern between different 
modes.  For shallow, range-independent environments where the sound is dominated by low-order modes, the 
waveguide invariant constant which characterizes the modal interference pattern is approximately equal to one.  
The speed of a contact which maintains a constant course and speed as it passes through its closest point of 
approach (CPA) can be determined from the asymptotic behavior of tonal frequencies from the Doppler shift.  
This information can be used along with changes in broadband striation frequencies in a Lloyd’s mirror pattern 
over time to extract the range of the contact as it transits through CPA.  If instead of using normal mode theory, 
the Lloyd’s mirror pattern is derived as the coherent interference between straight-line direct and surface-
reflected paths, a relationship between the striation frequencies and time of a crossing contact can also be 
derived.  This relationship can be shown to be identical to the result obtained from the normal mode approach 
when the value of the waveguide invariant is equal to one.   

1 Introduction 

Interest in autonomous sensor systems has increased in 
recent years.  In underwater acoustics, this interest has been 
fueled by decreasing detection ranges in the ocean due to 
quieter contacts of interest and noisier ocean environments.  
At the same time, the decreasing cost of microcontrollers, 
computer memory, processors and other computer hardware 
required to manufacture autonomous systems makes them 
more feasible.   
A parallel interest in underwater acoustic communication 
systems led to the question of how an acoustic modem 
could be used to fulfill a dual use as an autonomous passive 
acoustic sensor.  This paper focuses on the information 
which can be extracted from a single, omni-directional 
hydrophone.  At this point, no effort is made to automate 
the detection and information extraction.  Instead, it is 
shown how the time/frequency (spectrogram) information 
from a contact showing both a Doppler shift and a Lloyd’s 
mirror pattern can be used to derive the contact’s range at 
its closest point of approach (CPA).  The novel aspect of 
this work lies in the proof that, under certain conditions, the 
waveguide invariance approach to calculating the range at 
CPA yields the same result as straight-line ray theory.   

2 Background 

The term Lloyd’s mirror originated in the early 1800’s to 
describe the interference patterns observed between the 
direct and reflected paths of light rays and was extended to 
the interference patterns later seen in acoustic signals in the 
ocean.  Shortly after the original Lloyd’s mirror work, 
Doppler and Fizeau independently showed that the apparent 
frequency of a wave changes as a result of the relative 
motion between the source and receiver.   

These two effects, i.e., the Lloyd’s mirror or “bathtub” 
pattern and the Doppler shift, were used by Hudson [1] to 
show how the velocity, depth, and range at CPA could be 
computed for a submerged contact passing by an acoustic 
sensor at constant course and speed.  In order to 
successfully apply this method, the contact needs to emit 
both broadband and narrowband sound.  Hudson’s analysis 
assumed simple straight-line propagation in which sound 
traveling along a direct path from the contact to the receiver 
interfered with sound reflecting off the ocean surface.  The 
existence of this interference pattern requires a relatively 

smooth surface and short ranges to preserve the coherence 
of the two paths. 

Originally introduced by the Russian scientists Chuprov, 
Grachev, Brekhovskikh and Lysanov [2], the waveguide 
invariant approach provides an alternative model for the 
striations in Lloyd’s mirror patterns observed when a 
contact passes through CPA.  Following the earlier Russian 
work, D’Spain and Kuperman [3] describe how the 
striations can also arise from the interference between 
normal modes, thus explaining why such interference 
patterns occur well beyond the ranges at which the two-path 
Lloyd’s mirror model is valid.  The waveguide invariant 
theory provides a convenient framework for the analysis of 
these interference patterns.  This theory shows how a single 
scalar parameter, β , the waveguide invariant, summarizes 
the dispersive characteristics of the acoustic field in a 
waveguide. 

3 Theory 

3.1 Straight-line ray theory 

In order to get an interference pattern between paths, the 
sound reaching the receiver along these different paths must 
be coherent, i.e., there must be a constant phase difference 
between them.  Such interference is characterized by 
patterns of constructive reinforcement and destructive 
cancellation of spectral energy.  If the sound received from 
different paths is incoherent, the received intensity is the 
sum of the intensity coming from each separate path and 
the deep nulls which characterize destructive interference 
are absent.  The depth of the nulls also depends on the 
amplitude of the sound coming along the different paths.  
To the extent that the sound from two coherent paths is of 
equal amplitude, the pressure at the nulls will be zero.  In 
general, this requirement for coherence is met most 
frequently at short ranges where wave action and 
turbulence are minimal.  It is also more likely to be met by 
surface reflections due to the fact that virtually all incident 
sound energy is reflected off the water-air interface thus 
making the amplitudes of the direct and reflected paths 
approximately equal.  These interference patterns can be 
realized from paths reflecting off the ocean bottom as well; 
however, the bottom characteristics, frequency, and angle 
of incidence strongly influence the amount of energy 
reflected back into the water column.  
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The following section presents a mathematical explanation 
of the Lloyd’s mirror pattern seen in spectrograms and 
provides a means of determining contact range and speed at 
CPA based on the Lloyd’s mirror pattern and the Doppler 
shift of narrowband tonals.  The analysis in this work 
assumes that the contact maintains a constant course and 
speed as it passes through CPA.  Since Lloyd’s mirror 
patterns are commonly observed at fairly short ranges due 
to the interference between a surface-reflected and direct 
path, refraction is ignored in the following discussion.  In 
most cases this should be a reasonable approximation.  
Even with pronounced sound speed gradients the radius of 
curvature of the sound rays tends to be quite large.  
However, the method could certainly be extended to 
include refraction if required.  It should also be pointed out 
that at long ranges, many more multi-path interactions may 
need to be considered.   
Figure 1 provides a diagram of the basic geometry for 
analyzing surface interference on the basis of simple 
straight-line propagation for both a direct and surface 
reflected path.  If the surface is smooth enough, sound 
energy incident on the surface will reflect back at an angle 
equal to the angle of incidence.  The contact, B, is the 
source of acoustic energy.  It is at a depth of d meters below 
the surface and radiating both broadband and narrowband 
energy.  The receiver, D, is h meters below the surface.  
The sound emanating from the contact follows a direct path 
to the receiver, annotated by dr , and a surface reflected path 
of length sr .  The horizontal distance between the contact 
and the receiver is denoted by r.   
 

 
Figure 1.  Geometry for analyzing surface interference.  
From [4].  

It is clear from the picture that sr  and dr  are unequal, with 

s dr r> .  This difference in path length will result in an 
interference pattern if the sound propagating along the two 
paths is coherent.  Assuming that r>>h+d , the path-length 
difference is approximately equal to 

  2hdr
r

Δ = .    (1) 

Because of the 180o phase shift which occurs upon surface 
reflection, pressure minima, or nulls, occur where the path 
length difference between the direct and reflected paths is 
equal to an integral number of wavelengths.  This gives the 
ranges to the nulls as 

  2 2
n

hd hdr f
n ncλ

= = .   (2) 

Rearranging this expression yields the nulled frequencies as 
a function of range 

  
2n
ncf r
hd

= .    (3) 

These equations give the ranges at which certain 
frequencies will be nulled, or, conversely, which 
frequencies can be expected to be nulled as a function of 
range.  In either case, this means that as the range between 
source and receiver changes, the frequencies which have 
nulls at the receiver also change.  This treatment is 
generally considered to be valid for fairly short ranges 
where the decorrelating effects of ocean turbulence, wave 
action, and multipath structure have not destroyed the 
observed coherence of the direct and surface-reflected 
paths. 

A broadband spectrogram is shown in Figure 2.  The light 
(unshaded) hyperbolic striations centered about 0t =  are 
the nulls from the Lloyd’s mirror interference pattern for 
the broadband noise.  The frequency values 1f , 2f  etc. 
represent the minimum frequency, nf  of each hyperbola.  
The actual frequency from the sound source that is being 
nulled by the surface reflection varies with time as the 
hyperbolae are traced out.  These families of hyperbolae are 
often described as a “bathtub” pattern appearing in the 
spectrogram. 

Figure 2.  Frequency vs. time display of Lloyd’s mirror 
interference pattern. After [1]. 

An analysis of the geometry shown in Figure 3 explains 
why the striations have the shape of hyperbolae in the 
spectrogram.  In this figure, a contact is traveling along a 
constant course with speed v.  If 0t =  is taken as the time 
of CPA, the range to CPA is given by vt.  The instantaneous 
range of the contact from the receiver is given by r, and 
range at CPA is oR .   
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Figure 3.  Geometry for analyzing a spectrogram pattern for 
a contact passing through CPA.  From [4]. 

By the Pythagorean theorem, the distance to the contact at 
any time, t, is given by 

  2 2
or R vt= + .   (4) 

Substituting the expression for the frequencies which are 
nulled as a function of the range, Eq. (3), into this 
expression and rearranging yields 

 
2

2 2 2 22
o n

hdR f v t
nc

⎛ ⎞= −⎜ ⎟
⎝ ⎠

.   (5) 

This shows that the nulled frequencies trace out the pattern 
of nested hyperbolae with respect to time.   

The combination of the hyperbolic Lloyd’s mirror pattern 
produced by the emission of broadband energy from a 
contact and the contact’s discrete tonals can be exploited to 
produce a tracking solution.  If a contact has an observable 
tonal its frequency undergoes an apparent frequency 
change, or Doppler shift, as the contact closes range, passes 
CPA and then opens range.  The Doppler shift of 
narrowband tonals is also depicted in Figure 2.  The center 
frequency, of , can be calculated as 

  
2

u l
o

f f
f

+
=  ,   (6) 

where uf is the maximum closing frequency and lf  is the 
minimum opening frequency.  The contact’s tonal 
approaches this maximum and minimum frequency 
asymptotically as its range becomes large relative to the 
CPA range, because the component of velocity along the 
line of sound approaches the contact’s velocity.  The 
maximum Doppler shift is then given by 

  u o o
vf f f f
c

Δ = − = .   (7) 

Rearranging for the velocity, v , gives 

  
o

fv c
f
Δ= .    (8) 

Therefore, if the contact has a discernable tonal as it passes 
through CPA, its velocity can be estimated from the 
Doppler shift.  By examining the hyperbolic Lloyd’s mirror 
pattern of the contact, an estimate of the its range at CPA 
can also be developed.  First, a determination of how the 
frequency of the sound is changing in time as the contact 
approaches CPA must be recovered.  This is determined by 
measuring the slope of a regression line plotted along a 
striation.  Taking the derivative of Eq. (5) with respect to 
time, the slope along a striation is given by 

  
2

ndf ncv
dt hd

= .    (9) 

It is important to measure the slope of the striation line at 
long ranges where the slope is linear as it approaches its 
asymptotic value.  Not only does this validate the 
assumption that dr vdt = , but it also decreases the 

uncertainty by providing more points in the slope 
calculation.  
 
Returning to Eq. (3), it is evident that the range r is given 
by 

  2
n

hdr f
nc

= .    (10) 

Substituting Eq. (9) into Eq. (10) and assuming dr vdt =  

produces 

  n

n

v f
r df

dt

= .    (11) 

This expression is valid at ranges which are long compared 
to the CPA range since it depends on the assumption that all 
the contact’s velocity is along the line of sound.  Finally, by 
using the value of the contact’s range, r , the velocity as 
determined by the Doppler shift, and the time over which 
the measurement was made, the contact’s range at CPA can 
be determined from Eq. (5) as 

 ( )
2

2n
o

n

vfR vt
df

dt

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

.   (12) 

If instead of differentiating Eq. (3) with respect to time it is 
differentiated with respect to distance, it yields 

  
2

ndf nc
dr hd

= .    (13) 

Substituting 
2

nfnc
hd r

=  from Eq. (10) into this expression 

yields the more general result 

  n ndf f
dr r

=     (14) 

This expression is valid at any range as long as the 
assumption r>>h+d   holds.  It is also interesting to note 
that Eq. (10) predicts that the ratio of nulled frequency to 
range should be a constant for each striation, i.e., 

  constant
2

nfnc
hd r

= = .  (15) 

3.2 Waveguide invariant 

The original equation for the waveguide invariant, β , as 
defined by Brekhovskikh and Lysanov [2], is 

  
( )
( )
1/
1/

d vr d
dr d u
ωβ

ω
= = − ,  (16) 

where r  is the range along the line of sight from contact to 
receiver and /d drω  is the  derivative or slope of the 
angular frequency with respect to range at which the 
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striation nulls occur.  The quantities ( )1/d v and ( )1/d u  
are the derivatives of the phase slowness and group 
slowness respectively.  The phase slowness and group 
slowness are simply the inverses of the phase and group 
velocities for that particular mode.  As mentioned before, 
when the range between the source and receiver is much 
greater than the range at CPA, or R , all of the motion is 
along the line of propagation.  Therefore, / rδω δ  may be 
expressed as / v tδω δ .  Putting Eq. (16) in terms of 

/ tδω δ and velocity, v, yields 

  d v
dt r
ω β ω= .    (17) 

This equation can be expressed in terms of frequency 
instead of angular frequency and rearranged to yield 

  
/
v fr

df dt
β= .    (18) 

Since the angular frequency in the above equations refers to 
the frequency at which striation nulls occur, this expression 
is identical to the two-path ray theory result presented in 
Eq. (11) as long as β  is equal to one.  Rearranging 
Brekhovskikh and Lysanov’s expression in Eq. (16) and 
integrating in an environment where β  is constant yields 

d dr
r

ω β
ω

=∫ ∫   or   
( ) ( )

ln ln
o o

t r t
r

ω
β

ω
=  , (19) 

where oω  and or  are the nulled angular frequency and 
range at some arbitrary point in time along a striation.  
Kuperman and D’Spain exponentiate this term to express it 
in their 2001 paper [5] as 

  
( )

( ) o
o

r t
t

r

β

ω ω
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.   (20) 

Again it should be noted that for 1β = , this result is 
identical to the result of the two-path ray theory method 
since it predicts that the ratio of the nulled frequency to the 
range should be a constant. 

4 Discussion 

Problems arise for the waveguide invariant approach when 
β  varies with range or azimuth.  In these cases, β  can be 
calculated if the bathymetry and other parameters of the 
ocean waveguide at the locations of the source and receiver 
are known.  However, this can be problematic if the goal is 
to measure the source range.  Fortunately, as long as sound 
energy does not refract significantly into the bottom and the 
bottom depth is constant, β  is approximately equal to one 
[3].  Therefore, under most circumstances either theory can 
be used equally well to predict the range of a contact.  
These techniques were successfully used in [6] to determine 
the range of a contact at CPA to within 9% and its speed to 
within 4%.  These experiments were carried out at the 
approach to San Diego Bay in shallow (10m) water and at 
fairly close range (185m) with a surface contact. 
In cases where an array is available as opposed to a single 
hydrophone, it is possible to achieve range estimates 
without knowledge of the acoustic environment.  Recent 

work by Lee and Makris suggests a novel approach to the 
problem of source range estimation using the output of an 
array beamformer [7]. This “array invariant” method 
achieved range estimations within 25% out to several 
kilometers.   

5 Conclusions 

Waveguide invariant theory with 1β =  reduces to the same 
equations as those predicted by an isovelocity two-path ray 
model for estimating the range of a contact traveling at 
constant course and speed through CPA from its observed 
Lloyd’s mirror pattern.  This fact supports the decision to 
assume a value of 1β =  in situations where bathymetry and 
other ocean parameters are not known well enough to 
determine a more exact value.   
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