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LMP, UMR CNRS 5469, Université Bordeaux I, 351, cours de la Libération, 33405 Talence,
France

o.poncelet@lmp.u-bordeaux1.fr

Acoustics 08 Paris

10357



The paper is concerned with propagation of shear horizontal (SH) surface waves in semi-infinite media with 
vertically periodical continuous or discrete variation of material properties. Generally, the dispersion branches of 
these waves come about as broken intervals within random spectral ranges where the ‘physical’ solution exists. 
The more striking it is that the spectrum of SH surface wave may often have a perfectly regular spectral 
structure. The present study is focused on one of the most interesting cases, which is when the surface wave 
exists within only a single velocity window and does not exist elsewhere or vice versa. This occurs in particular 
if the material variation over unit cell is monotonic. Inverting the trend of monotonicity swaps two 
aforementioned types of spectra. Assuming simple examples of a linearly inhomogeneous and bilayered unit 
cells, we first calculate the surface-wave dispersion spectrum in the ( ,  domain and then obtain the same 
spectrum by post-signal processing of the FDTD (Finite Difference Time Domain) simulated wave field. A good 
agreement between the two spectra validates theoretical predictions.  

)kω

1 Introduction 

Surface acoustic waves acquire some striking particularities 
when the material properties have a periodical dependence 
along the vertical axis directed into the depth of the 
medium. In such a case, the surface-wave dispersion 
branches may extend down to zero horizontal slowness and 
they may come about in the form of randomly broken 
intervals. 
Further specificity characterizes the spectra of SH (shear 
horizontal) surface waves propagating in a vertically 
periodic half-space with a vertical symmetry plane. It is that 
the branches of 'physical' and 'non-physical' SH surface 
waves, attributed as such due to their decrease or increase 
into the depth, are the alternating intervals of the dispersion 
curves of actually another spectrum, namely, the spectrum 
for guided waves in a single unit cell (period) considered as 
a free layer. This feature has been noted for periodic stacks 
of homogeneous layers [1-5] generalized for an arbitrary 
continuous or piecewise continuous vertically periodic 
media [6]. The problem of finding SH surface waves 
reduces therefore to calculating the dispersion branches of a 
free unit-cell layer and to identifying their spectral ranges 
which render the wave 'physical'. 
Generally speaking, the SH surface wave may be expected 
to exist on some unordered 'fragments' of the reference 
unit-cell spectrum and these can be determined only 
through a numerical procedure of testing the radiation 
condition. Interestingly though, the spectral ranges of 
surface-wave existence can often be predicted without any 
calculations, by merely inspecting certain basic benchmarks 
of a given profile of variation of material constants over 
unit cell. For a broad class of inhomogeneity profiles, the 
dispersion spectrum of SH surface wave appears to be 
perfectly regular in that it is confined in between certain 
velocity bounds.  
A direct link between the profile shape and the surface-
wave existence is especially compelling when the material 
properties are monotonic over a period. For instance, if the 
velocity and impedance of the shear bulk waves are both 
decreasing over a period then the range of existence of SH 
surface wave on the dispersion curves is 'squeezed' to a 
narrow velocity window, which actually admits a simple 
and explicit evaluation. For an inverse, increasing profile 
the surface wave does not exist in this window and exists 
elsewhere. An analytical proof relies on the properties of 
the ordinary differential equation with periodically varying 
coefficients which governs the SH wave propagation in the 

 space. Such spectral selectivity may be interesting 
for applications. The objective of the present paper is to 

simulate the aforementioned phenomenon in the space-time 
domain and to compare the results with the prediction 
obtained in the transform domain. 

2 Background of the problem in the 
 space ( , )kω

2.1 Equation of motion 

Given is a unidirectionally inhomogeneous medium with 
the density  and stiffness tensor  
varying along axis Y . The tensor ijklc  is supposed to have a 
symmetry planeXY . Consider the SH wave propagating in 
this plane and polarized orthogonally to it. The wave 
displacement is sought in the form 

( )ijkl ijklc c y=( )yρ ρ=
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where  is the frequency and s  is the slowness along the 
axis X . The equation of motion may be written in the form 
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initial condition η  at any , is 0( )y 0y

  (4) η M η0 0( ) ( , ) ( ),y y y y=

where  is the 2x2 matricant or propagator. It 
expands into Peano series of multiple integrals [7-9] 
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where is identity matrix. I

2.2 Periodicity 

We now specify the inhomogeneity along Y  as periodic, so 
that  where T  denotes the least period. 
Each unit cell 

( , )kω Q Q( ) ( )y y T= +
[ ]0,y T∈  may be a stack of different 
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3 Surface-wave spectral corridor:  
prediction and verification 

homogeneous or inhomogeneous layers in welded contact 
maintaining continuity of , or it may be a single 
continuously inhomogeneous layer. Two SH Floquet modes 
[9] are associated with the eigenspectrum of the propagator 

 through the period 

η( )y

( , 0)TM
3.1 Continuously inhomogeneous unit cell   (6) M w w i

1 2( , 0) ( 1,2), 1/ ,KTT q q q eα α α α= = = ≡
where K  is the Floquet wavenumber. Obviously, 

 (7) 
We consider a periodically inhomogeneous isotropic half-
space with a traction-free surface y  and a 
monotonically decreasing profile over unit cell. To 
illuminate the principal features in question, we confine to a 
simple example of a linear velocity profile 

( , 0) ( 1,2)NNT qα α α α= =M w w .  

}

= = ±

= 0

For a given T , the propagator  and hence its 
eigenvectors α  and eigenvalues qα  depend on  and 

. The plane {  is therefore mapped out into 
the passbands, where 1q  and 2q  are complex conjugated 
numbers of a unit absolute value (  is real), and the 
stopbands, where 1q  and  are real (K  is purely 
imaginary). The lines q q  are the stopband 
edges. 

M( , 0)T
w ω

/s k ω= ,kω
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y nTc y c
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−= −  (10)  K
2q

44( ) /tc y c ρ=where ,  is the number of the unit cell, 
is the least period, and 

n
1 2( 1)

T

 . (11) (0) 1 / , 1tc mm s T mμ= = m
2.3 Dispersion equation 
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The SH surface wave in a vertically periodic halfspace must 
satisfy the condition 23  on the traction-free 
surface  and also the radiation condition, which 
demands decrease of surface-wave amplitude into the 
depth. For the latter reason, the appropriate ('physical') 
wave solutions lie strictly inside the stopbands and 
correspond there to that one of two SH Floquet modes 

 for which the (real) eigenvalue of  is 
such that 

0Aσ ′ =∼
0y =

M( , 0)T1,2,α =
1qα . This inequality does imply that SH 

surface wave consists of a single Floquet mode but, on this 
grounds solely, it may yet be either the mode  or the 
mode . Now we recall the traction-free boundary 
condition . A single Floquet mode fulfils the 
latter condition at y , and simultaneously at all 
interfaces  (see (7)), if and only if it corresponds 
to the eigenvector α  of M  with an identically 
vanishing second (related to A ) component. The required 
form α  demands that 3M T  and, given so, 
it selects a single Floquet mode exceptionally as the mode 

, for which M T  implies q M . 
Thus, by 

<

=
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= =η w
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y NT=

w ( , 0)T
′
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1α = 3( , 0) 0 1 1( , 0) Fig. 1. Dispersion curves calculated in the ( ,  space and 
overlayed onto the Floquet passbands (black zones) and 
stopbands (red zones, which appear as grey in black and 

white display). The stopbands near cutoffs are narrow and 
therefore not well resolved to the scale of the plot (see a 

zoomed inset).  

)kω
(4) with y and α  the wave 

amplitude at y  after any number  of periods is 
1 . It remains now to come back to 

the aforementioned radiation condition 

(0) (0) ,A0 0
NT= N

( ) ( , 0) (0NA NT M T A=
1qα <  and to fix 

 in there, thus asking that 1α =

1( ) ( , 0) (0) (0) .AT M T A A= <  (8) The density  is assumed constant. The 
dispersion branches calculated in the transform domain 

 from Eqs. 

31 /g cmρ =

Recapping the above arguments, the dispersion spectrum 
for SH surface wave in a semi-infinite periodic structure is 
defined by a pair of conditions 

( , )kω (5) and (9)

 ( )
3

1
1 4

( , 0) 0,

( , 0) ( , 0) 1,

M T

M T M T −

⎧ =⎪⎪⎪⎨⎪ = <⎪⎪⎩
 (9) 

 are shown in Fig. 1. These 
branches lie inside the Floquet stopbands and include 
‘physical’ parts, where the amplitude decreases into the 
depth and hence the surface wave exists, and the non-
physical part, where the amplitude increases and the surface 
wave does not exist.  The velocity window (spectral 
corridor on the  plane) of the surface-wave existence 
lies within asymptotically constant lower and upper 
velocity bounds 1c ω 2c , which can be  estimated by 
a simple and general formula involving only the values of 

 and tc y  at the unit-cell edges y  For the 
assumed case of a constant density, this formula simplifies 
to  

{ },kω
with the entries given by (5). Finding the spectrum, say in 
the form of frequency versus wavenumber dependence 

, amounts to a two-step procedure. The first step is 
solving Eq. 

/k
( )kω

(9)1 from which we calculate the dispersion 
branches for SH guided waves in a free inhomogeneous 
layer [ ]0,y T∈  consisting of one period of a given 
structure (see [10] for more details). The second step is 
applying the inequality (9)2 to identify the spectral intervals 
on these branches where the SH surface wave exists. 

( )yρ ( ) 0, .T=

x (0), ( )t tc c T1c ma , { } 2 2
2 (0) ( )t tc c .  (12) c T≈ +
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Inverting the monotonicity profile swaps the surface-wave 
existence and non-existence zones. 
We shall now verify the aforementioned predictions by 
simulating a time-space SH wave field in a periodic half-
space by means of the second-order FDTD (Finite 
Difference Time Domain) method.  
The numerical procedure is as follows. A surface punctual 
source generating SH transient signal is taken in the form 

 
2

00.05( )0
0

0

sin(8 ( ))
(r, ) (r r ) e ,

8 ( )
t tt t

F t
t t
πδ

π
− −−= −

−
 (13) 

where 0  is a point on the surface. This source is applied to 
the stress component 23σ  only. This type of signal is 
advantageous, because its frequency spectrum is almost a 
rectangular window  

r

 0 /2 4f MHzω π≤ = ≤  (14) 

with a constant amplitude for any frequency within the 
window. Therefore it enables getting numerical dispersion 
diagrams of approximately the same order of magnitude in 
the range ⎥⎣ ⎦  just by one simulation. The FDTD 
scheme is implemented for 20 inhomogeneous periodic unit 
cells with the profile 

0,4MHz⎡
⎢

⎤

m

)

(10). We choose 
 as dimensions for the cells in the 

numerical code, and a computational domain of 
 which corresponds to a grid of 

 cells along X and Y, respectively. At the 
highest frequency in the simulation (

0.025x y mΔ = Δ =

(40 , 30mm mm
1600 1200×

max 4f MHz= ) the 
least wavelength in the domain ( min ) is 
sampled by 7.5 points. The time step is  
and the simulation runs over 16384 steps (approximately 

). The PMLs (Perfectly Matched Layers) are added 
at the bottom and both edges for modeling a semi-infinite 
half-space. The computational domain and the duration of 
the simulation are large enough for the surface wave to 
form itself in space and time. Thereby, taking signals 

at  points on the surface we create a table 
. Then 2D FFT (Fast Fourier 

Transform) is applied to this table in order to visualize 
dispersion curves in the ( ,  domain as spectrum 
intensity images. In order to increase the resolution of those 
images (i.e. decreasing  and ) we have performed 
zero-padding over spatial and temporal data. It also allows 
us not to probe signals at each point along the surface but to 
pick signals periodically (basically one point over four 
along the surface was probed for the images presented in 
this paper). For example, the resolution in Figs. 2 and 3 are 

 (which is four times smaller than the 
 stemming from the raw data) and . 

Due to such a procedure, the images are neater and 
trajectories of dispersion curves are much more discernible. 

0.1875mmλ =
0.0075t μΔ = s

123 sμ

( ), 1..iS t i n= m
( , ), 1.. , 1..i jS t x i n j m= =

)kω

kΔ ωΔ

10.08k mm−Δ ≈
kΔ 0.05MHzωΔ ≈

Fig.2 compares the dispersion curves calculated directly in 
the  domain (see Fig. 1) with those obtained by 
means of post-signal processing of the FDTD-simulated 
wave field. A good correspondence between both spectra is 
observed. 

( , )kω

Let us see what happens for an increasing linear profile, 
which is inverse to (10), i.e., defined by 

 ( ) (0)(1 ).
4t t
nT yc y c
T
−= −  (15) 

According to the analytical derivation in the ( ,  space, 
the surface wave should now exist where it did not exist for 

the decreasing profile (10) and vice versa. Fig. 3 
demonstrates good agreement of this prediction with the 
FDTD numerical results. 

0 5 10 15 20 25

0

4

8

12

16

20

24

28

32

Surface wave exists
Surface wave does not exist
Surface wave by FDTD
Estimate (12) of the spectral window

ω, MHz

k,
 m

m
-1 vcjg

 
Fig. 2. Superposition of the dispersion curves calculated in 
the ( ,  domain with the curves obtained by FDTD. The 

profile of unit-cell inhomogeneity is given by  
)kω

(10) 

Note that a slight shift in Fig. 3 between the curves, 
calculated in the ( ,  domain and obtained by FDTD is 
due to the numerical dispersion of FDTD scheme. 
Eliminating this drawback is important for high-frequency 
implementation. This is possible by way of taking more 
points per wave length; on the other hand, doing so entails 
growth of the computational domain. Thus getting better 
precision of the numerical results at high frequency requires 
increasing computational time and RAM memory capacity. 

)kω
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Fig. 3. The same as in Fig. 2 for the increasing profile (15) 
inverse with respect to (10) 
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Fig. 4. Dependence of the FDTD-simulated SH wave field 
on the vertical coordinate y  for the profile (15), taken for 

 at a distance 13.75 from the source. 123t μ= s mm

For confirming consistency of our surface-wave modeling, 
we also calculate the distribution of signal amplitude 
through the depth at a fixed time, which is taken long 
enough to attain a stable wave amplitude profile. This 
occurs after the principal wave front emitted by the source 
reaches the edges of the computational domain and 
disappears within PMLs. As soon as it no longer affects the 
wave field, we observe the wave field produced by 
reflections and transmissions at the interfaces between unit 
cells. Fig. 4 shows an exponential decrease into the depth, 
which confirms the surface-wave type localization as 
predicted by the theory. 

3.2 Piecewise homogeneous unit cell 

We now briefly consider a periodically bilayered isotropic 
half-space. Both layers constituting the unit cell have 
constant values of density and velocity, which are taken as 
follows  

 (16) 3
1 2 1 21 / , 2 / , 1 / ,t tg cm c mm s c mm sρ ρ μ μ= = = =

where the subscript 1 and 2 indicate the upper and lower 
layers. Obviously, any bilayered unit cell has a discretely 
monotonic profile. In the case (16) the velocity (and 
impedance) decreases into the depth of the unit cell. Hence 
the SH surface wave must exist in a narrow velocity 
window. Its bounds are given by the same equation (12) as 
in the case of a continuously inhomogeneous unit cell, 
except that the lower bound and its evaluation become  
exact. Thus , where 1c ≤ /kω 2c

1c , { }1 2max ,t tc c 2 2
2 1 2t tc≈ +c c .            (17) 

For the simulation, we take a surface punctual source in the 
same form as in (13), but with the factor  replaced by 

 in order to decrease the calculation time, which is 
affordable for a relatively simple case in hand. The 
frequency spectrum of generated signal has a form of 
almost rectangular window 

8π
2π

0 /2 1f MHzω π≤ = ≤ .             (18) 
The FDTD scheme is implemented for 20 bilayered unit 
cells. We chose  and 
Computational domain is ( )  that is 
2600x400 grid. Implementing the same procedure as 
described in § 3.1, we obtain the curves which are 
displayed in Fig. 5 alongside the results of the direct 
calculation in the ( ,  space. It is noted that 

0.1x y mΔ = Δ = 0.017t sμΔ = . m
260 , 40mm mm

)kω (16) assumes 
the velocity contrast over unit cell such that is stronger 
higher than it was taken above in (10) (2:1 and 1:0.75, 
respectively), so the surface-wave velocity window in the 
present case is broader. This is confirmed by Fig. 5 but may 
elude the first glance due to a different frequency scale 
relatively to Fig. 2. 
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Fig. 5. Superposition of the dispersion curves calculated in 
the  domain with the curves obtained by FDTD for 

the bilayered unit cell defined in 
( , )kω

(16) 

The results for the inverse case of discretely increasing unit 
cell with 

  (19) 3
1 2 1 / ,g cmρ ρ= = 1 21 / , 2 /t tc mm s c mm sμ μ= =

are presented in Fig. 6. As expected, the spectral zones of 
surface-wave existence and non-existence swap with 
respect to Fig. 5. 
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