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High order asymptotic models of the relatively thin linings and coatings are used to reduce the problem 
dimension when dealing with a reasonable frequency range. The essential point consists in the use of asymptotic 
expansion for the internal stress and strain state of a laminate, subjected to the tight conditions at least on one of 
its faces, i.e., the conditions formulated for the displacements. The respective algorithm, based on it, is shorter 
than for the direct evaluation of the SAW spectra. It can be implemented to the calculation of Rayleigh waves or 
Lamb waves in layered media. Numerical examples are presented with both asymptotical and numerical 
evaluation of error. 

 

1 Introduction 

Many researchers in NDE, seismology, electronic devices 
and other applications investigate the ultrasonic wave 
propagation in layered solids. Despite the existence of the 
general solution to this problem (e.g., see [1]) for the 
variety of applications dealing with the limited frequency 
band the consuming full analysis is not required. When the 
layer half-thickness h  is much smaller than the minimal 
scale of process L  (wavelength), i.e. 1<<= Lhε , the 
approximate model may accelerate the calculations with the 
satisfactory accuracy. In particular, the influence of lining 
or coating can be replaced by introducing the impedance 
boundary conditions (IBC) on the interface. Such low order 
IBC for anisotropic layer in between two solids are 
constructed in [2,3] by expanding the transfer matrix in 
power series. Below the alternative way to deduce IBC of 
high order is suggested. The displacements and stresses are 
sought in the form of asymptotic ε -power series with 
successive asymptotic integration of 3D dynamic boundary 
value problem of viscoelasticity. This method is well 
developed in the theory of thin plates and shells and 
provides an efficient way to deduce the relations of any 
order. A simplified version of a similar method with 
expansion in power series of transversal coordinate is 
applied in [4] for 2D problem of isotropic piezoelectric 
coating with a stress-free surface within the third order 
asymptotic accuracy. Another method to approximate 
waves propagating as ( )TkXie ω−  in layered solids is based 
on the recursive relations to deduce transfer matrices or 
stiffness matrices using Padé approximation together with 
Magnus expansion [5,6]. Our results differ from those in 
[5,6] by the high order terms [7] and provide the uniform 
asymptotic accuracy. We also apply the suggested method 
in the case of dissipative materials including non traditional 
nematic elastomers [8]. 

2 Formulation and scaling 

Consider a laminate where each j th anisotropic ply 
occupies a region ∞<<−∞ 21, XX , 1+≤≤ jj ZZZ  

( )NjZZH jjj ,,2,1,1 K=−= + . Let us denote its mass 

density by jρ  and stiffness matrix by j
pgj g=G  

( )12,13,23,33,22,11~6,5,4,3,2,1, =qp . We assume that the 

longitudinal displacements ( )Tjjj UU 21 ,≡U , normal  

deflection jj UW 3≡  and stresses pqjσ  satisfy the 3D 
equations of dynamic elasticity and conditions of full 

contact on the interfaces. On the faces 1ZZ =− , 

1+
+ = NZZ  ( )hZZ 2=− −+   the tight boundary conditions 

are assumed, i.e., their formulation includes the explicit 
displacement term −

pU  or +
pU . Using small parameter ε  

perform the normalization LXx =  ( )( )21, XX=X , 

hZz =  and 0TTt =  ( )0000
1

0  , ρετ EccLT ≡= − . Here  

0ρ  and 0E  are the reference mass density and stiffness, 
and τ  is a parameter. Introduce the dimensionless 
quantities and operators 
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The desired displacements and stresses for the internal 
stress and strain state is sought in the form of asymptotic 
series 

{ }jj h ...10 ++= uuU εε λ ,  { }jj wwhW ...10 ++= εε λ ,   (1) 

{ }
jpqpqpqj E   10

0 K++= εσσεσ λ ,                (2) 

with undetermined power λ . The Hooke law, elasticity 
equations and interface conditions yield 
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( α
βδ  is a Kronecker delta). It is easily to check that this 

chain of relations looses recurrence at 1>τ , so we choose 
the maximal value 1=τ  with 0T  corresponding to the 
minimal possible period in plies. The value λ  follows for 
the order of the facial load. Upon the recurrent relations we 
successively determine quantities for K,1,0=s  by setting  
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3 Asymptotic integration 

On performing the substitution of series (3) into recurrent 
chain, expressing k

±d  and k
±t  on the faces using equations 

of motion and conditions on the interfaces we obtain for the 
sum of three terms in (1), (2) 
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The relations (4)-(7) remain the same in the dimensional 
form. The asymptotic error of these relations is determined 
by the order of the neglected terms and equals ( )3εO . For 
the case of equivalent plies it is easily to increase the 
accuracy up to ( )6εO . The respective relations acquire the 
following dimensional form 
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4 Modeling lining and coating 

Let us now proceed to the consideration of the contact 
between the thin laminate and thicker solid, e.g., such as 
half space, thick plate or very shallow shell. In a thick solid 
we do not assume the existence of any small parameter and 
the scale of process is determined only by L . Thus, the 
scaling for thick solid differs only by transversal coordinate 

LZz =  and does not change the type of equations of 
motions and elasticity relations. The stress and strain state 
can be represented in the form of asymptotic series  

{ }jj L ...10 ++= uuU εε μ , { }jj wwLW ...10 ++= εε μ ,  (12) 

{ }
jpqpqpqj E   10

0 K++= εσσεσ μ ,                (13) 

by virtue of contact with thin laminate and the relations for 
s th order terms are the same as in 3D elasticity without 
additional recurrence.  By this reason we do not perturb the 
procedure of asymptotic integration from Sec.3 and obtain 
the same results (4)-(11), where ±

zt  and ±d  are values on 
the interfaces (or on the face). The asymptotic error also 
remains the same. The interpretation depends on the type of 
boundary value problem considered: the lining is described 
by Eq.(4),(5) (laminate) or (8),(9) (single layer); the coating 
with given facial stresses is described by Eq.(6) (or (10)) 
and the coating with given facial displacements is described 
by Eq.(7) (or (11)), respectively. Thus, the influence of a 
lining or coating is replaced by approximated IBC.  

Acoustics 08 Paris

3089



 

5 Dissipative materials 

The results (4)-(11) are obtained for pure elasticity. Assume 
now that the energy dissipation is allowed. A simplest case 
is the Kelvin-Voight model of linear viscoelasticity 

{ } qjt
j

pq
j

pqpj gg εσ ∂′′+′=

 ( )12,13,23,33,22,11~6,5,4,3,2,1, =qp  

where j
pqg ′  is a stiffness tensor and j

pqg ′′  is a viscosity 

tensor. The viscosity coefficients are supposed to be small 
and the relaxation time 1<<′′′= j

pq
j

pq
j
pq ggτ , so for the time 

harmonic problem tie ω− , ωit −∂ ~  up to frequency 

( )12 0 OTj
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j
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pq

j
pq

j
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This estimate holds even for the order 0~ cLj
pqτ . The 

asymptotic consideration is similar to the previous one and 
it is sufficient to set ( )ωjj GG =  and qj

j
pqpj g εσ =  in (4)-

(11). The deduction  logic remains the same for more 
complicated case of complex modulii 

K+++= 2210
jjjj GGGG εε . 

Thus, in (4)-(11) the nonlinear viscosity is also possible at 
least for small enough ε . As an example of non traditional 
material let us consider the lining and coating made of 
liquid crystalline nematic elastomer [6]. Under wide 
assumptions such material can be treated as compressible, 
transversely isotropic with main “director” axis denoted by 

3x  and having additional degrees of freedom ( )T21,θθ=θ , 
describing the relative rotation of director n  and material 
point. The rotation angle satisfies the quasistatic equation 

( ) ( )[ ] 011 2211 =⋅∂++×∂+× εnθnn tt DD ττ , 

where 21 , DD  and 21,ττ  are the rotational stiffnesses and 
relaxation times. For the time harmonic problem 

⎥
⎦

⎤
⎢
⎣

⎡−
−
−=⎥

⎦

⎤
⎢
⎣

⎡

13

23

1

2

1

2

2

1

1
1

ε
ε

ωτ
ωτ

θ
θ

i
i

D
D . 

The stiffness tensor are expressed via elastic constants kc  
( )5,,1K=k  of transversal isotropy which yields stresses 
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with the bulk relaxation time Rτ  satisfying inequality 

1152
2
2 8 τττ RDcD ≤ . The ideal nematic with ( ) 005 ==ωRc  

is closer to liquid. As seen the procedure from above is 
applicable for nematics under ( ) 1,,max 21 <<Rτττω  and 
relations (4)-(11) remain in force. 

6 Numerical validation 

As the numerical tests it is reasonable to consider the 
simplest partial waves for which the exact solution is easily 
to obtain for comparison. The typical results for waves 
falling from the top isotropic half space “+” and 
propagating through the two layered lining ( )21 HH =  into 
bottom half space “-“ are presented in Figs.1,4,7. The 
relative error e  is introduced as follows 

[ ]
∑
−+

−=
SP

exas MMe
,;,

22  1  41 , 

where exM  runs the exact complex magnitudes and asM  
runs the approximates values of the wave magnitudes in 
half-spaces obtained by using IBC.  For the top coated half-
space (see Figs.2,3,5,6,8,9) the error is chosen as  

[ ]
∑
−+

−=
SP

exas MMe
,;,

22  1  21 , 

for magnitudes of the reflected waves.  
The materials are: Al (aluminium), Po (polystyrene), Eg 
(orthotropic E-glass). The curve number corresponds to the 
asymptotic order of the truncation in IBC (4)-(7).  
 

 
 

Fig.1 Error for S-wave falling at the angle 70o to the 
interface of Al-Eg0o/90o-Po against 2211 LHLHR += . 

 

 
 

Fig.2 Error for S-wave falling at 70o to the interface of Al-
Eg0o/90o (stress free coating face). 
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As seen the error is maximal for the free face, minimal for 
the clamed face and the interval of 1% model error is about 
10-2. This value is similar to the validity interval of the 
classical theory of plates. The accuracy is much better when 
the lining (or coating) becomes a single layer, for which the 
results are shown in Figs.4-6. As one can see the third order 
model has a validity interval 0.1 and the high order model 
is valid till 0.25, which reminds us the analogue with the 
high order classical plate theories. The improvement by 
third order is explained by the appearance of the wave 
operator in (4)-(11), since the less order models are 
quasistatic. 

 

 
 

Fig.3 Error for S-wave falling at 70o to the interface of Al-
Eg0o/90o (clamped coating face). 

 

 
 

Fig.4 Error for S-wave falling at 80o to the interface of Al-
Eg0o-Po ( L  is a min shear wavelength in E-glass). 

 

 
 

Fig.5 Error for S-wave falling at 80o to the interface of Al-
Eg0o (stress free coating face). 

 
The tests for a single layer nematic coating and lining are 
shown in Figs.7-9. The parameters of non-ideal nematic are 

( ) QArrD 00
2

01 1 μμ +−= , ( ) rrD 2
02 1−= μ  ( 01.00 =A  

is a deviation coefficient) with the anisotropy parameter of 
molecular chain  3≈r  and 3.015.0 TQ =  under 

temperature C37o=T ; 310=ρ [kg/m3], 01.01 =τ , 
5

2 105 −×=τ , 610−=Rτ [sec], ( ) rrc 81 2
05 += μ , 9

3 10=c , 
5

0421 1022 ==== μccc [N/m2].  

 

 
 

Fig.6 Error for S-wave falling at 80o to the interface of Al-
Eg0o (clamped coating face). 

 

 
 

Fig.7 Error for S-wave falling at the angle 70o to the 
interface of Al-Ne0o-Po. 

 

 
 

Fig.8 Error for S-wave falling at the angle 70o to the 
interface of Al-Ne0o (stress free coating face). 

 

 
 

Fig.9 Error for S-wave falling at the angle 70o to the 
interface of Al-Ne0o (clamped coating face). 
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The director orientation is chosen along z -axis but the 
error remains stable for other orientations. As one can see 
the validity interval is approximately the same as 
previously. 
Since the surface and guided waves are composed of partial 
waves the expected accuracy should be of the same order. 
Note, that from the viewpoint of the thicker solid our model 
can be not low frequency. In Figs.10,11 the fundamental 
bending mode (B0) and first mode (B1) are presented for a 
three layered plate made of two aluminium layers and a 
lining of one layer of epoxy which is ten times thinner than 
each Al-ply. The curves are evaluated directly and using 
IBC (8),(9); the latter are marked by numbers as previously 
and Sc  is the speed of shear wave in aluminium.  

 

 
 

Fig.10 Fundamental bending mode. 
 

 
 

Fig.11 First bending mode. 

 
As shown the agreement is achieved not only for small 
frequency but for more than twice the total cut-off 
frequency. Of course, the most general situation depends on 
the limit behaviour of dispersion curves and on the energy 
flow between the layer and substrate (see, e.g., [9]). 

7 Conclusion 

The asymptotic high order theory of relatively thin lining 
and coating is suggested. The main result consists in 
replacing the lining (coating) by IBC which reduces the 
dimension of the respective boundary value problem. The 
physical reason of this fact is the absence of the 
fundamental mode in the spectrum of laminate under tight 
conditions on its faces. The obtained model is generally low 
frequency but possibly not long wave. It is applicable to the 
wide class of advanced composed materials, including 
those with energy dissipation and with non classical 

behaviour. As shown, the nematic liquid crystalline 
elatomers can be approximated in such a way. Besides the 
consideration of the full interface contact one can similarly 
deduce the respective IBC for a slipping interface, frictional 
contact, etc. 
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