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High order asymptotic models of the relatively thin linings and coatings are used to reduce the problem
dimension when dealing with a reasonable frequency range. The essential point consists in the use of asymptotic
expansion for the internal stress and strain state of a laminate, subjected to the tight conditions at least on one of
its faces, i.e., the conditions formulated for the displacements. The respective algorithm, based on it, is shorter
than for the direct evaluation of the SAW spectra. It can be implemented to the calculation of Rayleigh waves or
Lamb waves in layered media. Numerical examples are presented with both asymptotical and numerical

evaluation of error.

1 Introduction

Many researchers in NDE, seismology, electronic devices
and other applications investigate the ultrasonic wave
propagation in layered solids. Despite the existence of the
general solution to this problem (e.g., see [1]) for the
variety of applications dealing with the limited frequency
band the consuming full analysis is not required. When the
layer half-thickness /% is much smaller than the minimal
scale of process L (wavelength), i.e.£=h/L <<1, the

approximate model may accelerate the calculations with the
satisfactory accuracy. In particular, the influence of lining
or coating can be replaced by introducing the impedance
boundary conditions (IBC) on the interface. Such low order
IBC for anisotropic layer in between two solids are
constructed in [2,3] by expanding the transfer matrix in
power series. Below the alternative way to deduce IBC of
high order is suggested. The displacements and stresses are
sought in the form of asymptotic & -power series with
successive asymptotic integration of 3D dynamic boundary
value problem of viscoelasticity. This method is well
developed in the theory of thin plates and shells and
provides an efficient way to deduce the relations of any
order. A simplified version of a similar method with
expansion in power series of transversal coordinate is
applied in [4] for 2D problem of isotropic piezoelectric
coating with a stress-free surface within the third order
asymptotic accuracy. Another method to approximate
waves propagating as e =oT) 4 layered solids is based
on the recursive relations to deduce transfer matrices or
stiffness matrices using Padé approximation together with
Magnus expansion [5,6]. Our results differ from those in
[5,6] by the high order terms [7] and provide the uniform
asymptotic accuracy. We also apply the suggested method
in the case of dissipative materials including non traditional
nematic elastomers [8].

2 Formulation and scaling

Consider a laminate where each jth anisotropic ply
occupies Zj <Z< Zj+1

(Hj=Zj+1—Zj,j=1,2,...,N). Let us denote its mass

a region —oo<X|,X,<oo,
density by p; and stiffness matrix by G, = “gﬁg“
(p.q =1,2,3,4,5,6 ~11,22,33,23,13,12) . We assume that the
longitudinal ~displacements U, = (Ul ;U j)T , normal
deflection W;=U;; and stresses 0, satisfy the 3D

equations of dynamic elasticity and conditions of full
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contact on the interfaces. On the faces Z =7,
Zt=Zy, (Z -7 = Zh) the tight boundary conditions
are assumed, i.e., their formulation includes the explicit
displacement term U, or U;’. Using small parameter &

perform x=X/L (X=(X,,X,)),
z=Z/h and t=T/T, (To =" L/cy, e, E,/Eo/po). Here

0, and E are the reference mass density and stiffness,

the normalization

and 7 is a parameter. Introduce the dimensionless
quantities and operators

w O oy
dj =luU, , tzj 05, , t)gf (g7 ,
“l; 01z J; On];
+
d =d1|Z z7 d =dN|z—z+ > b =t21|z:z’ ?
+ 1[4+ - 1, + -
tZ: ZN|Z=Z+’ di:i(d td )’ ti:itz itZ)
- 0 [ _+ -
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¥ Il N
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k=1 k=j+1
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The desired displacements and stresses for the internal
stress and strain state is sought in the form of asymptotic
series

U, =h€’1{u0+&ul+...}j, W, =h€’1{w0+6w1+-.-}j, (M
g :Eoei{ogq +ECh, +... }/

()

with undetermined power A. The Hooke law, elasticity
equations and interface conditions yield

K s—1 K K
Eoe = Ogllyy (0, B=12), €2, =0, W},
s _ s—1 s—1 s _ s—1 s
Viaj =01y, 05Uy 5 Vo =0gW;  + 0y,
s _ ~T T q5-1 s s _ T T ys—1 K
t, =G/ D'd" +G,;0.d}, t;, =G| D'd}" +G.,0.d],

245 _ ~-1 s—1 s=2
9%d’ =Gy (D, 0.5 + A ,0072)



S _ ¢S s s
ty=ty, d;=

J+1

(z:z

t;,? :tj 02,+s , ds+ d+5/1+b+1 ( ZZ;) )

j=12,.,N-1),

j+1

(52‘ is a Kronecker delta). It is easily to check that this
chain of relations looses recurrence at 7 >1, so we choose
the maximal value 7=1 with 7, corresponding to the

minimal possible period in plies. The value A follows for
the order of the facial load. Upon the recurrent relations we

successively determine quantities for s =0,1,... by setting
k+l m k _m
k b4 k 1 _ z k
dj - Z dej s tzj - Z ml - mzj (3)
m=0 =0

3  Asymptotic integration
On performing the substitution of series (3) into recurrent
chain, expressing d% and tf on the faces using equations

of motion and conditions on the interfaces we obtain for the
sum of three terms in (1), (2)

d_=(G;'+C+Th, ~(0-N+Efd,, (4
t_=(0-N-F)t, +(0+0+L)d, , (5)
t_+[0+N+(F£L,)lt, =(0+0+L)}d*,  (6)
d_+[0+N+(E+L,)[d, = e

=67 +lex 6N reGiN sGiF N,

where

Zh GO/ ’ G+j Z+th0k ’ N= Zh N
NE: (- +_N-
N 572+hkN,{ ., =N"(6;}-6: )+G0]( NS )

!
5ZhC Cct=

JIe

= Y. mC, . L= A +N G N
32l Ly =LGy',
G} = Tk
J}+N1{NL—NZ},

Ep R

L=%Zh]LJ,L =
J
Fj=Nj(Nj—N )+L (G !

ji_*z+hka 9ET GOJ{L+

E=§Zh]EJ ,Ef =
J

The relations (4)-(7) remain the same in the dimensional
form. The asymptotic error of these relations is determined
by the order of the neglected terms and equals 0(6‘3 ) For
the case of equivalent plies it is easily to increase the
accuracy up to 0(86). The respective relations acquire the

following dimensional form

t=NGy, +n2 345, -0 /5As,)d_ +
NI PR

i, =[Gy, +h2 /3B, —h*/5B, J_+

©)
+(hGOjNJT- - h*[3By; +h5/6B5j)d+,
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€ +h(N, £ L, + 1S, £I°R,, +h'Pg, e, =

_ T 2 3 + (10)
—n0+ L, + AL N7 + 12M,, £ 47Qy, )d*,

d_+h(N, £ AL, + %S, iRy, +h*Py, | d,

(11)
= WG AN, + 12Ny, £ Ry, + BT, £ AYS ) ),
where
- -1 —
A;;=A,GyD;;, By, =Al,,
S;, =L N —(A;,+N B, )/3/G5}, Ay, =A,GilA,,

B4_< =2/3 B3/G0jD1j +1/4B,Gy'B,;

1 =85,GNT (A, +N B;, )/3
R4j = (M4j -L,B 1/3)‘301’

As;=2/3A,,GyjDy; +1/4A;,G/B,,
B;; =4/5B;,Gy A ; +2/15B G B, ,
T
Qs; =R4;Go,N; ~Lo;By; /3,

Ps; = [Qs_/ -S;,B;/3 +(A51 + NfB4_f)/ 5](;5}’

R;; =S5, +Ny N, ~L;NGyj,
=Ry N; +N;R;; —N;N;;N; +

+ (B4j/5 + B_/GB}B/‘/9)GSL

Ty,

Ys; =Ty N; +

+[(as, +N By, )/ 5—(N,A,, + R3ij)/ 363

4 Modeling lining and coating

Let us now proceed to the consideration of the contact
between the thin laminate and thicker solid, e.g., such as
half space, thick plate or very shallow shell. In a thick solid
we do not assume the existence of any small parameter and
the scale of process is determined only by L. Thus, the
scaling for thick solid differs only by transversal coordinate
z=Z/L and does not change the type of equations of

motions and elasticity relations. The stress and strain state
can be represented in the form of asymptotic series

U, :Lgﬂ{uo +eau! +...}j, W, :Le”{wo +ew'! +...}j, (12)

el vec), +..
0, = Eo€ Opg tEO0pg oo [

(13)

by virtue of contact with thin laminate and the relations for
s th order terms are the same as in 3D elasticity without
additional recurrence. By this reason we do not perturb the
procedure of asymptotic integration from Sec.3 and obtain

the same results (4)-(11), where tf and d* are values on

the interfaces (or on the face). The asymptotic error also
remains the same. The interpretation depends on the type of
boundary value problem considered: the lining is described
by Eq.(4),(5) (laminate) or (8),(9) (single layer); the coating
with given facial stresses is described by Eq.(6) (or (10))
and the coating with given facial displacements is described
by Eq.(7) (or (11)), respectively. Thus, the influence of a
lining or coating is replaced by approximated IBC.



Acoustics 08 Paris

5 Dissipative materials

The results (4)-(11) are obtained for pure elasticity. Assume
now that the energy dissipation is allowed. A simplest case
is the Kelvin-Voight model of linear viscoelasticity
Op = {g pat &0 }gq/
(p.g=1234,56~11,22332313,12)
where “g;{] “ is a stiffness tensor and “g;é “ is a viscosity
tensor. The viscosity coefficients are supposed to be small

; ; Jo— " ol ;
and the relaxation time 7;, =g, / 8 pg <<1, so for the time

harmonic problem e, 9, ~ —iw up to frequency
wr;, = 2m'lf,q/T0 =0(1),

gl =g (1—i2zecyr, h)=0(1).
This estimate holds even for the order riq ~L[cy . The
asymptotic consideration is similar to the previous one and
it is sufficient to set G; =G () and o, = g} &, in (4)-

(11). The deduction logic remains the same for more
complicated case of complex modulii

_ 0 1 22
Gj—Gj+eGj+£ Gj+....

Thus, in (4)-(11) the nonlinear viscosity is also possible at
least for small enough & . As an example of non traditional
material let us consider the lining and coating made of
liquid crystalline nematic elastomer [6]. Under wide
assumptions such material can be treated as compressible,
transversely isotropic with main “director” axis denoted by

x, and having additional degrees of freedom @ = (6,6, )",

describing the relative rotation of director n and material
point. The rotation angle satisfies the quasistatic equation

nx[D,(1+7,0,)nx0+D,(1+7,0,)n-g]=0,

where D,,D, and 7,7, are the rotational stiffnesses and
relaxation times. For the time harmonic problem

0| _D,l-iwr, |~y
o, '

The stiffness tensor are expressed via elastic constants ¢

(k = 1,...,5) of transversal isotropy which yields stresses
’ ’ 2 4 20
811 =8n =30 —5C 23+ ¢y,
;o2 4 16
82 =5¢ 50+ 20—y,
’ ’ 4 2 4
813 =8y =~y t30 + 20—y,
’ _ 8 8 2 8 ’ _ ’ _2 ’ _2
83 =y T30 203+ 5Cs,8a4 = €55 =2C5, 866 = Ca»
. ’ ’ ’
Opp = (1 —loTR )(gp1511 + &m0 +gp3€33) (p = 13233)
_ . R _ _ . ’
Oy = (1_1MR)g447237 (‘1 = 172)7 Oop = (1_1MR)866712=

_D_22 (1—iw72)2
8D, (1-iwr, \1-iwty)’
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with the bulk relaxation time 7, satisfying inequality
D37,y < 8csDyry7, . The ideal nematic with ¢f(w=10)=0
is closer to liquid. As seen the procedure from above is
applicable for nematics under a)max(rl,rz,rR)<<l and

relations (4)-(11) remain in force.

6 Numerical validation

As the numerical tests it is reasonable to consider the
simplest partial waves for which the exact solution is easily
to obtain for comparison. The typical results for waves
falling from the top isotropic half space “+” and
propagating through the two layered lining (H =H 2) into
bottom half space “-* are presented in Figs.1,4,7. The
relative error e is introduced as follows

=14 Y

[+,~P.5]

2

>

‘I—M““/M”‘

where M * runs the exact complex magnitudes and M “
runs the approximates values of the wave magnitudes in
half-spaces obtained by using IBC. For the top coated half-
space (see Figs.2,3,5,6,8,9) the error is chosen as

=12 3

[+,~P.5]

2

>

‘I—M‘”/M‘”‘

for magnitudes of the reflected waves.

The materials are: Al (aluminium), Po (polystyrene), Eg
(orthotropic E-glass). The curve number corresponds to the
asymptotic order of the truncation in IBC (4)-(7).

e,%

0 0.008 0.016 R

Fig.1 Error for S-wave falling at the angle 70° to the
interface of Al-Eg0°/90°-Po against R = H, /L, + H, /L, .

e,%

0.01 0.02 R

Fig.2 Error for S-wave falling at 70° to the interface of Al-
Eg0°/90° (stress free coating face).



As seen the error is maximal for the free face, minimal for
the clamed face and the interval of 1% model error is about
10, This value is similar to the validity interval of the
classical theory of plates. The accuracy is much better when
the lining (or coating) becomes a single layer, for which the
results are shown in Figs.4-6. As one can see the third order
model has a validity interval 0.1 and the high order model
is valid till 0.25, which reminds us the analogue with the
high order classical plate theories. The improvement by
third order is explained by the appearance of the wave
operator in (4)-(11), since the less order models are
quasistatic.

e, %

Fig.3 Error for S-wave falling at 70° to the interface of Al-
Eg0°/90° (clamped coating face).

e,%

120

60

H/L

Fig.4 Error for S-wave falling at 80° to the interface of Al-
Eg0°-Po ( L is a min shear wavelength in E-glass).

e,%

80

40

Fig.5 Error for S-wave falling at 80° to the interface of Al-
Eg0° (stress free coating face).

The tests for a single layer nematic coating and lining are
shown in Figs.7-9. The parameters of non-ideal nematic are

D, :ﬂo(r—l)z/r+A0,qu, D, :ﬂo(l_rz)/r (A4, =0.01
is a deviation coefficient) with the anisotropy parameter of

molecular chain r=3 and Q=0.157" under
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T=37°C; p=10°kgm’], 7,=001,
7, =5%107°, 7, =107 [sec], ¢5 = uo(r +1)[8r ¢ =10°,
¢ =2¢y =2¢4 = iy =10° [N/m’].

temperature

e,%

80

40

H/L

Fig.6 Error for S-wave falling at 80° to the interface of Al-
Eg0° (clamped coating face).

04 H/L

Fig.7 Error for S-wave falling at the angle 70° to the
interface of Al-Ne0°-Po.

e, %

Fig.8 Error for S-wave falling at the angle 70° to the
interface of Al-Ne0° (stress free coating face).

e,%

04 H/L

Fig.9 Error for S-wave falling at the angle 70° to the
interface of Al-Ne0° (clamped coating face).
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The director orientation is chosen along z -axis but the
error remains stable for other orientations. As one can see
the wvalidity interval is approximately the same as
previously.

Since the surface and guided waves are composed of partial
waves the expected accuracy should be of the same order.
Note, that from the viewpoint of the thicker solid our model
can be not low frequency. In Figs.10,11 the fundamental
bending mode (B0) and first mode (B1) are presented for a
three layered plate made of two aluminium layers and a
lining of one layer of epoxy which is ten times thinner than
each Al-ply. The curves are evaluated directly and using
IBC (8),(9); the latter are marked by numbers as previously
and ¢y is the speed of shear wave in aluminium.

sh

oh

Fig.10 Fundamental bending mode.

sh

Bl

oh

Cs

0.5 1 1.5 2

Fig.11 First bending mode.

As shown the agreement is achieved not only for small
frequency but for more than twice the total cut-off
frequency. Of course, the most general situation depends on
the limit behaviour of dispersion curves and on the energy
flow between the layer and substrate (see, e.g., [9]).

7  Conclusion

The asymptotic high order theory of relatively thin lining
and coating is suggested. The main result consists in
replacing the lining (coating) by IBC which reduces the
dimension of the respective boundary value problem. The
physical reason of this fact is the absence of the
fundamental mode in the spectrum of laminate under tight
conditions on its faces. The obtained model is generally low
frequency but possibly not long wave. It is applicable to the
wide class of advanced composed materials, including
those with energy dissipation and with non classical
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behaviour. As shown, the nematic liquid crystalline
elatomers can be approximated in such a way. Besides the
consideration of the full interface contact one can similarly
deduce the respective IBC for a slipping interface, frictional
contact, etc.
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