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LMP, UMR CNRS 5469, Université Bordeaux I, 351, cours de la Libération, 33405 Talence,
France

dmitrii.zakharov@gmail.com

Acoustics 08 Paris

2071



The 3D guided waves in the linearly viscoelastic laminates are considered. On the plate surfaces any of the 
homogeneous boundary conditions are allowed, e.g., the Lamb waves, waves in clamped plates, etc. are taken 
into account. The fundamental property of these waves is their generalized orthogonality, which is deduced and 
discussed. The applications of the orthogonality relations for solving some particular boundary value problems 
are suggested. A method for the exact calculation of the far field caused by an acoustic source of a finite size is 
suggested. The only restriction is that the distance required must exceed the longitudinal radius of the source. 
The obtained results can be used for evaluating the fields radiated by ultrasonic transducers of arbitrary aperture 
and by other realistic sources.  
 

1 Introduction 

The wide use of composite materials causes the increasing 
attention to the guided waves in layered plates, which is a 
subject of monographs, reviews and numerous papers. As 
known, such guided waves are not orthogonal like 
trigonometrical Fourier series but they possess the 
orthogonality relations (OR) with respect to the power flow. 
These OR were deduced in the 70’s for an elastic strip with 
various homogeneous boundary conditions on its faces [1-
7]. The relations for 3D guided waves are presented below. 
Such OR can be used to construct the linear algebraic 
system of equations with respect to the unknown mode 
coefficients when using mode decomposition similarly to 
the various plane problems, e.g., the contact interaction 
between strips and a half-space, diffraction by a crack or 
wave reflection by an edge. In this paper the 3D guided 
waves are considered in a laminate with homogeneous 
boundary conditions on its faces (HBCF) including stress 
free faces, fixed faces or any other combinations of zero 
displacements or zero stresses providing the total energy 
reflection by the faces. The viscoelasticity is taken into 
account in the form of Kelvin-Voigt model or Maxwell 
model. The main motivation for this study is to generalise 
the results obtained earlier for one layer and pure elasticity 
[8-10], to elucidate the physics and to work out a method 
for exact calculation of the field, radiated by a realistic 
acoustic source into viscoelastic laminate. Since the 
numerical methods for 3D problems are time consuming 
the analytical and semi-analytical methods are still of 
interest for NDT needs when modelling the far-field and 
near-field. 

2 Formulation 

Consider a laminate composed of N  plies where each j th 
ply occupies a region ∞<<−∞ 21 , xx , 13 +≤≤ jj zxz  and 
subjected to the time-harmonic load (Fig.1). To be brief the 
factor tie ω−  is omitted in what follows. The layer 
displacements juα  satisfy the equations of motion  
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j

j fu αααββ ωρσ ,   )3,2,1,( =βα          (1)                                          

where jρ  are mass densities and jfα  are body forces to be 

specified further. The stresses j
αβσ  and strains j

αβε  satisfy 
Hook’s law and Kelvin-Voigt model of viscoelasticity with 
the complex-valued Lame constants, wave numbers and 
wave speeds  
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Fig.1 Laminate geometry. 
 

On the interface jzx =3 , Nj ,,3,2 K=  the conditions of 
the full contact are assumed 

jj
3

1
3 αα σσ =− , jj uu αα =−1 .                    (6)                 

In addition the field may satisfy the conditions on the faces 

1zz =−  and 1+
+ = Nzz  in the form of given stresses m

3ασ  

or displacements m
αu  or by their combinations. 

3 Field representation 

Introduce the displacement field and proceed to the 
cylindrical coordinates zr ,, θ : θcos1 rx = , θsin2 rx = , 

zx =3 . Using Lame potentials and separation of variables 
at the absence of body forces, the waves propagating in r -
direction in j th layer result as follows 
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The terms )(srBB nn ≡  are any of the appropriate Bessel 
function or Hankel function of the first or second kind and  

{ }srddBB nn ≡′ . The functions ( )zu j , ( )zv j  and ( )zw j  
satisfy the system of equations 
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where jj βα +≡ 2 , jjj μλβ ≡ , 1+≡ jj βγ . Equations 
(7)-(13) permit us to describe the guided wave of the 
wavenumber s  within constant factor in a simple form 
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S
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The stresses look as follows (not to sum over j ) 
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The equation (6) at jzz =  acquire the form 
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In what follows the homogeneous boundary conditions on 
the face 1zz =−  (HBCF) mean one of the following forms:  

( ) ( ) ( ) 0
1
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dz
zdwzz τσ           (stress free surface), 

( ) ( ) ( ) 0111 === −−− zwzvzu             (clamped surface), 

( ) 01 =−zv , ( ) ( ) 0
1

1 ==
−

−

dz
zdwzτ         (mixed conditions 1), 

( ) 01 =−zσ , ( ) ( ) 011 == −− zvzu         (mixed conditions 2). 

The similar formulations are used for 1+
+ = Nzz . Any 

combination of HBCF on mzz =  and Eqs.(16), (17) give us 
a system of equations wrt j

S
j
SP BA ±± ,,  whose NN 66 ×  

matrix L  yields the frequency equation 
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The important fact is the independency of the frequency 
equation of the number n  and its coincidence with the 
frequency equation to the respective in-plane or out-of-
plane problem with matrix blocks ΔL  and δL . Assume 
that the frequency Eq.(18) has simple roots. Thus these 
roots can be subdivided into two subsets δSSsl ∪∈ Δ  due 
to the polarization of the displacements:                              

 Δ∈Ss : 0=jw ; 0, ≠jj vu ,               (19)                 

δSs∈ : 0== jj vu ; 0≠jw .               (20)                 

In addition the frequency equation is symmetrical with 
respect to sm , and in case of pure elasticity wrt s  and s . 
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l
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4 Orthogonality relations 

Let us introduce the scalar products across j th layer of any 

functions j
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mg  related to the wave numbers  ls  and 
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After some simplifications, we obtain for the homogeneous 
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Kronecker delta)  
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By virtue of the independency of the factors with 
cylindrical functions nB  we conclude that for 22
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The Eqs.(25)-(27) are the desired OR between modes with 
the “in-plane” and/or “out-of-plane” polarization. Their 
physical meaning is the power flow additivity due to the 
reciprocity. Indeed, substituting   { }tij
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The choice of ( )2,1
nn HB =  in case of pure elasticity for the 

propagating mode  0>ls   yields 
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where lK , lE  are integrals of the positive kinetic and 
elastic energy density across the lateral cylindrical surface. 
The sign ±  is chosen accordingly to the first or second 
kind of Hankel’s function, respectively. Thus, the equations 
(30)-(32) give us a criterion of the energy propagation to 
select real ls , if they exist. 

5 Far field of a finite acoustic source 

Assume that the laminate motion is caused by an acoustic 
source in the form of body forces jfα , distributed in a finite 
volume embedded into cylinder jΩ∪=Ω , or in the form 

of surface load distributed over a finite region on −Ω1  or 
+ΩN . Another part of the faces satisfies HBCF. Let us 

represent the laminate response as a function of coordinates 
zr ,,θ  and decompose it into Fourier series wrt the angle 

θ . Upon the general theory of differential equations in 
partial derivatives the field inside Ω  ( )Rr <  has two 
components: a particular solution due to the acoustic source 
and a general homogeneous solution. At Rr >  the 
particular solution vanishes and the field equals the series 
of modes (7)-(9) for with respective ( )1

nn HB =  (or ( )2
nH ) 

due to the energy radiation principle. 

 

 
 

Fig.2 Acoustic source. 

 
On the surfaces j

RΩ  ( )Rr =  the inner and outer solutions 

satisfy the continuity of juα  and j
rασ . For each wave 

number ms  introduce also a standing wave with 

)()( rsJrsB mnmn ≡  and the same components j
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mv  and 
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mw . Then, integrating the total field j
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standing wave over cylinder Ω  we obtain 
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Here mnΓ  does not contain any unknowns. For example, if 

the source is given by the stresses −
zασ  on −Ω1  and +

zασ  on 
+ΩN  this expression yields 
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Then we do the following: replace the field on the lateral 
surfaces j

RΩ  by the mode series for the outer zones with 

Hankel’s functions ( )
nnn iNJH +=1  (or ( )2

nH ); annihilate in 
the left hand side of Eq.(33) all waves except mss =  by 
taking into accounts OR (25)-(27); simplify the right hand 
sides in (21)-(23) using the property of cylindrical function  
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Finally it yields the exact mode coefficients 
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in the similar form for the combination of trig functions 
θncos , θnsin  or θnsin− , θncos . Hence, we suggest a 

general method to evaluate the “far” field – but in fact the 
total field at the distance Rr > , where R2  is the 
longitudinal size of an acoustic source. The method requires 
the calculation of spectra ΔS  and δS , modes (7)-(9) and 
coefficients (36) in the double series wrt n  and ms . In the 
case of pure elasticity the classical far field as waves 
propagating to infinity is expressed by ordinary series of n  
with a finite set of real wave numbers ms at each frequency. 

6 Some exact solutions 

Consider a few examples of calculating mnΓ . Assume that 

the load is distributed over a circular region +ΩN  and the 

surface stresses ( )θσ ,rzz
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Other 0=Γmn . It is also easily to obtain the laminate 
response to a concentrated load. For the concentrated body 
forces ( )03210 ,, zxxxTf j −= δδ β

αα  ( 10 +≤≤ jj zzz ) at any 
HBCF we obtain 
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Note that these formulae are non singular since the dummy 
displacements ( )0,, zru j

m θβ  contain Bessel’s function 

nn JB =  whose value at the origin is regular.  However the 
mode series might have singularity at the origin due to the 
Hankel functions involved. By the same reason for the 
transversal load (axisymmetrical problem 3=β ) the terms 
with 1≥n  vanish and only 00 ≠Γm . For the longitudinal 
load ( )2,1=β  only 01 ≠Γm . 

7 Some generalizations 

First natural generalization is for a fluid loaded laminate. 
Assume that some layers are not solids but ideal 
compressible (or incompressible) fluids. Thus, in each fluid 
marked by zero we must satisfy the equation 
( 0

0
0 U∇−= λP  is a pressure) 

0002
0

0 =++∇− fUωρP , 

the continuity condition for normal displacements between 
solid and fluid, and the condition for normal stress equals 
opposite pressure on the interface. The analogues of HBCF 
in case of the facial fluid surface are the absence of pressure 
or of the normal displacements. The displacement vector in 
fluid is determined similarly to (7)-(9) with 0=jw and 
with pressure 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧
−

=
θ
θ

λ
n

n
srBzpP n sin

cos0
0

0

( )00000
012

0
0 ,, ρλω ≡≡−≡ − cckuskp . 

The waves with the “out-of-plane” polarization in the 
laminate remain unperturbed, but the “in-plane” waves 
have some corrections. The identities (22)-(23) and 
orthogonality relations (26)-(27) remain in force. The 
formulae (21) and (25) must use ∗

lmW  corrected as follows 
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( )Δ∈ Sss ml , ,             

where number k  corresponds to fluid layers. The formulae 
(36) also remain in force but mnΓ  should have the 
additional volume integrals and replaced facial integrals if 
these faces are of fluid ply given by the following terms 
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The second generalization concerns the layers of possibly 
infinite thicknesses. Now the spectrum of the respective 
boundary value problem is subdivided into discrete part 

δSS ∪Δ , whose homogeneous waves are described 
similarly to Section 3 (trig functions are replaced by 
exponents for infinite thickness), and by continuous part 

δηηη ∪= Δ  for which we obtain 
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The continuous part consists of the cutoffs for radicals SPq ,  
in each half space. It is important that for the case of a finite 
source the field of continuous part satisfies the homogenous 
equations at Rr > . By this reason the identities (21)-(23) 
hold not only for a discrete part of spectrum but also when 

δ,Δ∈ Ssl  and δη ,Δ∈ms  ( )22
ml ss ≠  or vice versa. The right 

hand side in (21)-(23) must be integrated over δη ,Δ . Thus, 
the relations (25)-(27) are valid and  

• Different homogeneous waves of discrete 
spectrum are orthogonal to each other; 

• Homogenous waves of discrete spectrum are 
orthogonal to waves of continuous spectrum. 

This immediately results in the mode coefficients (36) for 
δSSsm ∪∈ Δ  omitting the consideration of the direct and 

inverse Fourier transform. The necessary wave numbers is 
easily obtained from the frequency equation for the plane 
problem in laminate. However, for the continuous part of 
spectrum there is no simplification in the consideration of 
the cutoffs in Fourier integrals. 

8 Conclusion 

The obtained results can be clearly subdivided into three 
groups. First group includes orthogonality relations for the 
cylindrical guided waves satisfying homogeneous boundary 
conditions on the laminate faces. They correlate with the 
results of previous authors for an elastic layer and plane 
waves, which can be obtained as a limit case for large 
radius. The explicit expressions for reciprocity relations are 
obtained as well for both elastic and linearly viscoelastic 
media due to the symmetry of their energy functional. The 
second group describes solving methods for the important 
problem to evaluate the far field of an acoustic source - 
surface loads or body forces localised in a finite region – 
which can be solved in a closed form. The obtained Green’s 

functions can be used to represent a field of arbitrary 
aperture by convolution integrals. The solution for a 
circular region is of interest for modelling circular 
transducers. In particular, having the time harmonic field 
radiated into laminate we may also evaluate a pulse train 
using harmonic synthesis. The third group generalizes our 
results for the case of fluid loaded laminate and/or layers 
with infinite thicknesses, for which we obtain the closed 
form of 3D Rayleigh, Love, Stonely or Scholte waves. As 
far as the question of the guided wave completeness is 
concerned, we may refer to the more general result. 
Normally, the total set of eigenfunctions of the polynomial 
operator pencil has multiple completeness (accordingly to 
its degree) in the functional Sobolev’s space on a cross-
section of the geometrical region considered (see [11]). 
Reducing this set we arrive at the ordinary completeness, 
e.g., for basic functions  )1(

nn HB =  the subset 0Im <ls  is 
excluded. The same property is expected for 2D and 3D 
guided waves in laminates. 
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