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The 3D guided waves in the linearly viscoelastic laminates are considered. On the plate surfaces any of the
homogeneous boundary conditions are allowed, e.g., the Lamb waves, waves in clamped plates, etc. are taken
into account. The fundamental property of these waves is their generalized orthogonality, which is deduced and
discussed. The applications of the orthogonality relations for solving some particular boundary value problems
are suggested. A method for the exact calculation of the far field caused by an acoustic source of a finite size is
suggested. The only restriction is that the distance required must exceed the longitudinal radius of the source.
The obtained results can be used for evaluating the fields radiated by ultrasonic transducers of arbitrary aperture

and by other realistic sources.

1 Introduction

The wide use of composite materials causes the increasing
attention to the guided waves in layered plates, which is a
subject of monographs, reviews and numerous papers. As
known, such guided waves are not orthogonal like
trigonometrical Fourier series but they possess the
orthogonality relations (OR) with respect to the power flow.
These OR were deduced in the 70's for an elastic strip with
various homogeneous boundary conditions on its faces [1-
7]. The relations for 3D guided waves are presented below.
Such OR can be used to construct the linear algebraic
system of equations with respect to the unknown mode
coefficients when using mode decomposition similarly to
the various plane problems, e.g., the contact interaction
between strips and a half-space, diffraction by a crack or
wave reflection by an edge. In this paper the 3D guided
waves are considered in a laminate with homogeneous
boundary conditions on its faces (HBCF) including stress
free faces, fixed faces or any other combinations of zero
displacements or zero stresses providing the total energy
reflection by the faces. The viscoelasticity is taken into
account in the form of Kelvin-Voigt model or Maxwell
model. The main motivation for this study is to generalise
the results obtained earlier for one layer and pure elasticity
[8-10], to elucidate the physics and to work out a method
for exact calculation of the field, radiated by a realistic
acoustic source into viscoelastic laminate. Since the
numerical methods for 3D problems are time consuming
the analytical and semi-analytical methods are still of
interest for NDT needs when modelling the far-field and
near-field.

2 Formulation

Consider a laminate composed of N plies where each j th
ply occupies a region —eo <x,Xx, <o, z; Sx3 <z, and
subjected to the time-harmonic load (Fig.1). To be brief the
it

factor is omitted in what follows. The layer

displacements u/, satisfy the equations of motion
050l + 00l + f1 =0, (@f=123) (1)

where p; are mass densities and £ are body forces to be

specified further. The stresses 0'0’;,3 and strains géﬂ satisfy

Hook’s law and Kelvin-Voigt model of viscoelasticity with
the complex-valued Lame constants, wave numbers and
wave speeds
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Fig.1 Laminate geometry.

On the interface x; =z;, j=23,...,N the conditions of

the full contact are assumed
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J7 =yl
oly =0 =uj.
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In addition the field may satisfy the conditions on the faces

z” =z and z' =z,,, in the form of given stresses o,

or displacements u,, or by their combinations.

3  Field representation

Introduce the displacement field and proceed to the
cylindrical coordinates »,8,z: x =rcos@, x, =rsiné,
x3 =z . Using Lame potentials and separation of variables

at the absence of body forces, the waves propagating in r -
direction in j th layer result as follows

u-f{—uthwfiBn} sl )
sr —sinn@
) ) . innd
u-(g{ufiBn—wa;Hm" } )
sr cosnf
W =i cosnf ' ©)
: "|-sinné

The terms B, = B,(sr) are any of the appropriate Bessel
function or Hankel function of the first or second kind and
B, =dB,/d{sr}. The functions u/(z), v/(z) and w/(z)
satisfy the system of equations



d? 2| dv’
|:E+0!j{q{>}z:|uj—}/jé'$=0, (10)
2 . ) J
{%%%qé}z}v’ms%w, (n
d*w’ R
PE +{qs} w/ =0, (12)

W =Wf - pf =lif -2 a3

where o; =2+ f,;, B; E/ij/,u_/ , ¥;=pB;+1. Equations
(7)-(13) permit us to describe the guided wave of the
wavenumber § within constant factor in a simple form

(A;‘S-/s , B;fj = const)

5
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The stresses look as follows (not to sum over j)

J
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M r
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The equation (6) at z =z acquire the form

w =yl v =y Wi =g (16)
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In what follows the homogeneous boundary conditions on
the face z~ = z; (HBCF) mean one of the following forms:

ol )=o) )

EEIEIER

vl(zf)ZO, T1(27)= dw;z =0
/2

o )=0, )= il )0

The similar formulations are used for z* =z,,,. Any

(stress free surface),
(clamped surface),
(mixed conditions 1),

(mixed conditions 2).

combination of HBCF on z = z* and Eqgs.(16), (17) give us
a system of equations wrt A;’f'S,B;” whose 6N x6N

matrix L yields the frequency equation

L, 0
detL=0, L= . (18)
0 Ly

The important fact is the independency of the frequency
equation of the number 7 and its coincidence with the
frequency equation to the respective in-plane or out-of-
plane problem with matrix blocks L, and Lg. Assume

that the frequency Eq.(18) has simple roots. Thus these
roots can be subdivided into two subsets s, € S, USs due

to the polarization of the displacements:
seS, i w/ =05 u/ v 20, (19)
seSs:u/ =v/=0; w 20, (20)

In addition the frequency equation is symmetrical with
respect to Fs, and in case of pure elasticity wrt s and 5 .

Setting, for the definitiveness, M’ = 43" or M! = B{' the

+j +j .
constants Ay’ , By’ are expressed from the equations

LAx[Agfs]Tzo, L(;X[B;”]T:O.

4  Orthogonality relations

Let us introduce the scalar products across j th layer of any

functions f/ and g/ related to the wave numbers s, and

Sm

(1/.2)= I 1 ghdz

Zj

and compose the following quantities

Wi = Su At vl - leh i} (srsne 54),
J

G, z?ﬂj{(plj,w,{l)—(v/,%w,{;]+ Slz _s'z" (ulj,w,’n)}

S

(s, €8,,5, € Sa),
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T =S, vh) (515 S5).
J

Consider the cylinders Q ; = {r SR,z;<z<z +1} with the
lateral and top/bottom surfaces Q7 = {r =R, z;<z< zjﬂ}
and Qf = {r SR, z=z; } Let us write the integrals over

o
(te") =X [[/gldd= Rzzf(f/,g;; Jio .
JQj Jj o

After some simplifications, we obtain for the homogeneous
waves the following set of identities (&, =1+3°, dg isa
Kronecker delta)

<Gl,r,u;”>+<Glrg,uz>+<clrz,u'2">—
~(opul) (ol uh)~(on.ul)= @D
= TRE B, (5, RIB) (5,R) = Wi B, (5, R)B, (5, R}
<c§,,u;">+<G’,,,,ug>+<ciz,u?>-
<Gr,,ul> <:ﬂg,u;> <Grz,ul> (22)

=ﬂ§nG;,SiB,, (5,,R)B, (s,R),

(ohu)+(olguf )+ (o) u2) -
—<o;';,ui>—<o¢'9,ug> <G,Z,ul> 23)
= RE, Ty (Epy = Epy )
Epp = 5511B, 1 (5, R)B, 5 (5,R) = B,y (5,,R) B, (5, R)} . (24)

By virtue of the independency of the factors with
cylindrical functions B, we conclude that for s,2 # s,zn

Wy, =0, (25)
G;n =0, (26)
Ty =0. 27)

The Eqgs.(25)-(27) are the desired OR between modes with
the “in-plane” and/or “out-of-plane” polarization. Their
physical meaning is the power flow additivity due to the

reciprocity. Indeed, substituting Re{ e ""t} instead of
u gd into the averaged power flow
* w 27w
Pz | ZIRjddds,
0 JjQf
(7} = B coso+ B sind. B =0y

we arrive at the expressions

P 72'5 R {Zﬂ/ [(Z >u1) (z'l i )]le ( R)Bn(SZR)} (28)

(Sz € Sa ),

" =%Re{§ﬂj o o 5, 5,008, )

_§n+2(is)Bn+l(is)]} (Sl € S&)’
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The choice of B, = H ,51’2) in case of pure elasticity for the
propagating mode s; >0 yields

P =+&,cWy, ¢ =afs; (s;€5,), (30)
P =%,0T; (s€Ss). 31
Py~tc{K +Ef, R— +eo, cl = dwds| _ ,(32)

where K,;, E, are integrals of the positive kinetic and

elastic energy density across the lateral cylindrical surface.
The sign * is chosen accordingly to the first or second
kind of Hankel’s function, respectively. Thus, the equations
(30)-(32) give us a criterion of the energy propagation to
select real s, , if they exist.

5 Far field of a finite acoustic source

Assume that the laminate motion is caused by an acoustic
source in the form of body forces f;/, distributed in a finite

volume embedded into cylinder Q=UQ ;, or in the form

of surface load distributed over a finite region on €, or

Q1. Another part of the faces satisfies HBCF. Let us

represent the laminate response as a function of coordinates
r,0,z and decompose it into Fourier series wrt the angle
6. Upon the general theory of differential equations in
partial derivatives the field inside Q (r<R) has two
components: a particular solution due to the acoustic source
and a general homogeneous solution. At r>R the
particular solution vanishes and the field equals the series

of modes (7)-(9) for with respective B,= H (or H, ))
due to the energy radiation principle.

Acoustic source

Cylinder Q

Fig.2 Acoustic source.

On the surfaces Q4 (r=R) the inner and outer solutions

satisfy the continuity of u/ and o/,. For each wave

number s, introduce also a standing wave with

m
B,(s,r)=J,(s,r) and the same components u,{“ v-,f, and
w/ . Then, integrating the total field o.s, u) with this
standing wave over cylinder € we obtain

S {0l sl ~lgii pdd=T,, ., (33)

J Qf



Cow = ([l o +
g

(34)
}{O‘aﬁmua - O-Otﬂuam }nﬂdA

Here I',,, does not contain any unknowns. For example, if
the source is given by the stresses o, on Q[ and o, on
Q) this expression yields

+ N + N + N
an == .” {O-zzuzm + 0, Uy, + 0 0Ugy }1‘4 -
+
B (35)

-1 -1 -1
- ,U{O-zzuzm + 0,y + O glgy, }1‘4
Qp

Then we do the following: replace the field on the lateral

surfaces Q% by the mode series for the outer zones with

Hankel’s functions H ,Sl) =J,+iN, (or H ,(,2)); annihilate in

the left hand side of Eq.(33) all waves except s =5, by

taking into accounts OR (25)-(27); simplify the right hand

sides in (21)-(23) using the property of cylindrical function
e (SIR)Nn (SIR)_ I (SIR)Nn+1 (SIR) =2/7Rs, .

Finally it yields the exact mode coefficients

M) =-is, T,/ R, )
M;T =—i an/ zfnT;mr}’

in the similar form for the combination of trig functions
cosn@, sinn@ or —sinnf, cosnf . Hence, we suggest a
general method to evaluate the “far” field — but in fact the
total field at the distance » >R, where 2R 1is the
longitudinal size of an acoustic source. The method requires
the calculation of spectra S, and Sy, modes (7)-(9) and

=—is, [ (36)

coefficients (36) in the double series wrt n and s,, . In the

case of pure elasticity the classical far field as waves
propagating to infinity is expressed by ordinary series of n
with a finite set of real wave numbers s,, at each frequency.

6 Some exact solutions

Consider a few examples of calculating I, . Assume that
the load is distributed over a circular region Q}, and the
surface stresses o7.(r,0), o' (r,0) and o (r,0) are
expanded into the trigonometrical Fourier series wrt 6. In

accordance with the representations (17)-(23) let us for a
moment denote coefficients of cosnf (or —sinn@) for

ol and o, by 7} (r) and 7}, (r), respectively. For o,
the coefficient of sinn@ (or cosn@ ) is denoted by 7, (r).

The substitution into (123) yields

T, =& () )y +v) e
Ty = ;ff{[r,; () 2 W (52 [ ) 22 ) (5
R
T ;’ = jr;’n (r)J n (smr)rdr .

0
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In particular, for a constant normal load 77, / 2 we obtain

V,IX(Z+), S, € Sy
0, s, €S5]’

and for a constant tangent load 7j;, in the direction x, the

I

m

0= _iml (SmR)f;o X
s

m

coefficients are

u,l,\[(erl Sy, € Sy
—w,];/(er), S, €Ss '

Other I, =0. It is also easily to obtain the laminate

T, =2 RJ(s,R)ih %

ml —
m

response to a concentrated load. For the concentrated body
forces £ =Ty688(xy. x5 —2)) (z;<2zp<z;,,) at any
HBCF we obtain

= -3 ([[{r v =

J o/

F}'ﬂ}’l

with a similar result for the concentrated surface load

ob =156P8(x.x,):

+ N

I Ty uﬂm

mn

r=0,z=z" ’
Note that these formulae are non singular since the dummy
displacements u,ém (r,0,z,) contain Bessel’s function

B, =J, whose value at the origin is regular. However the
mode series might have singularity at the origin due to the
Hankel functions involved. By the same reason for the
transversal load (axisymmetrical problem £ =3) the terms
with n2>1 vanish and only I, #0. For the longitudinal

load (8=12) only T, #0.

7  Some generalizations

First natural generalization is for a fluid loaded laminate.
Assume that some layers are not solids but ideal
compressible (or incompressible) fluids. Thus, in each fluid
marked by zero we must satisfy the equation

(P° = —/10VU0 is a pressure)
VP’ + py@*U° +£° =0,

the continuity condition for normal displacements between
solid and fluid, and the condition for normal stress equals
opposite pressure on the interface. The analogues of HBCF
in case of the facial fluid surface are the absence of pressure
or of the normal displacements. The displacement vector in
fluid is determined similarly to (7)-(9) with w’ =0 and
with pressure

cosnf@

R A
(po =—kys~u’ kg = W/COsco = V/lo/po)-

The waves with the “out-of-plane” polarization in the
laminate remain unperturbed, but the “in-plane” waves
have some corrections. The identities (22)-(23) and
orthogonality relations (26)-(27) remain in force. The

formulae (21) and (25) must use W, corrected as follows
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Wi = S )= lenori - Saacloi*it) - 67)
J

(Slﬁsme SA)’

where number & corresponds to fluid layers. The formulae
(36) also remain in force but I, should have the

additional volume integrals and replaced facial integrals if
these faces are of fluid ply given by the following terms

S v, [[Pruleda, [[Prulsda.
kQf Qo Qo
The second generalization concerns the layers of possibly
infinite thicknesses. Now the spectrum of the respective
boundary value problem is subdivided into discrete part
S,uUSs, whose homogeneous waves are described
similarly to Section 3 (trig functions are replaced by
exponents for infinite thickness), and by continuous part

n=n,\Uns for which we obtain

u’ . (—ujB,;+wjan/sr M;coan—M;sinnH)
ué = ZJ' (uj}’an/S}"—W‘iB;l M,fsinnt9+M,jcosm9) ds,
wl | " v/ B,\M; cosn@—M; sinn6

MES = ME(s).

The continuous part consists of the cutoffs for radicals ¢p g

in each half space. It is important that for the case of a finite
source the field of continuous part satisfies the homogenous
equations at » > R . By this reason the identities (21)-(23)
hold not only for a discrete part of spectrum but also when

51€ Sy s and 5, €N,y 5 (Slz # s,%,) or vice versa. The right
hand side in (21)-(23) must be integrated over 77, 5. Thus,
the relations (25)-(27) are valid and

Different homogeneous waves
spectrum are orthogonal to each other;

. of discrete

e Homogenous waves of discrete spectrum are

orthogonal to waves of continuous spectrum.

This immediately results in the mode coefficients (36) for
S, € Sy USs omitting the consideration of the direct and

inverse Fourier transform. The necessary wave numbers is
easily obtained from the frequency equation for the plane
problem in laminate. However, for the continuous part of
spectrum there is no simplification in the consideration of
the cutoffs in Fourier integrals.

8 Conclusion

The obtained results can be clearly subdivided into three
groups. First group includes orthogonality relations for the
cylindrical guided waves satisfying homogeneous boundary
conditions on the laminate faces. They correlate with the
results of previous authors for an elastic layer and plane
waves, which can be obtained as a limit case for large
radius. The explicit expressions for reciprocity relations are
obtained as well for both elastic and linearly viscoelastic
media due to the symmetry of their energy functional. The
second group describes solving methods for the important
problem to evaluate the far field of an acoustic source -
surface loads or body forces localised in a finite region —
which can be solved in a closed form. The obtained Green’s
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functions can be used to represent a field of arbitrary
aperture by convolution integrals. The solution for a
circular region is of interest for modelling circular
transducers. In particular, having the time harmonic field
radiated into laminate we may also evaluate a pulse train
using harmonic synthesis. The third group generalizes our
results for the case of fluid loaded laminate and/or layers
with infinite thicknesses, for which we obtain the closed
form of 3D Rayleigh, Love, Stonely or Scholte waves. As
far as the question of the guided wave completeness is
concerned, we may refer to the more general result.
Normally, the total set of eigenfunctions of the polynomial
operator pencil has multiple completeness (accordingly to
its degree) in the functional Sobolev’s space on a cross-
section of the geometrical region considered (see [11]).
Reducing this set we arrive at the ordinary completeness,

e.g., for basic functions B, = H" the subset Ims, <0 is

excluded. The same property is expected for 2D and 3D
guided waves in laminates.
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