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Voice quality variability is due to supra-segmental influences but also to segmental factors like phoneme
class, vowel quality, nasalization, airstream mechanism etc. These factors determine a rather unexplored
micro-prosodic phenomenon: the phone-intrinsic voice quality which causes voice quality coarticulation
and voice quality transitions in fluent speech. I subsume all these phenomena under the high-frequency
components of prosody. Since high-frequency and low-frequency components (supra-segmentals) of
voice quality prosody are superposed and thus encoded, the main goal of the present investigation is to
separate them and make both accessible to speech research. In 2003 a holistic voice quality parameter
extractor was introduced by Mokhtari, Pfitzinger & Ishi [10]: It applies a principal component analysis
to a database of glottal-flow waveforms for the purpose of analysing and reconstructing all underlying
glottal-flow waveforms from just a few principal components. By applying this basic principle to a large
corpus of 92,167 manually segmented glottal-flow waveforms of 44 speakers I dramatically improved its
applicability to any speech signals. Subsequent high-pass and low-pass filtering of the resulting voice
quality parameters yielded phone-intrinsic voice quality parameter sets as well as slowly varying voice
quality parameter contours. It turned out that 99.44% of the observed variance is explained by the first
six principal components.

1 Introduction

The unique timbre of an individual human voice is the
result of the static nature as well as the dynamic control
of both the glottal behaviour and the vocal tract shape.
Generally when referring to the term voice quality the
properties of glottal behaviour are addressed, especially
the precise vibration of the vocal folds which results in
the glottal air flow and, after passing through the vo-
cal tract and subsequent radiation at the lips, in the
acoustic pressure waveform which is the speech signal.

Childers & Wong 1994 [3] emphasize the presence of
interaction between the laryngeal activity and the vocal
tract, meaning that the two components of the source-
filter-model of speech production are neither fully sep-
arable nor independent of each other. The glottis and
the vocal tract are interacting. Despite this fact Linear
Predictive Coding (LPC) [9] is widely used to decom-
pose the speech signal into a ‘quasi’ source signal and
short-term ‘quasi’ transfer functions of the vocal tract
represented by autoregressive filter coefficients. LPC-
based inverse filtering yields a quasi-excitation signal
and quasi-stationary filter coefficients and thus enables
meaningful modifications to the vocal tract parameteri-
zation. Many recent approaches to speech morphing and
voice conversion successfully use this approach [2, 14].

However, glottal air flow parameterization is a more
heterogeneous topic. During several decades, glottal
flow (derivative) models which combine basic mathe-
matical functions to approximate the waveshape, ap-
proaches based on physical modelling, and data driven
approaches arose and disappeared. This situation is eu-
phemistically characterized as a modest breakthrough.

In 2006 [16] I stated that voice quality as one of the
prosodic dimensions has its supra-segmental and seg-
mental manifestation, i.e. has low- and high-frequency
components which are almost independently. The conse-
quence is to further decompose the parameterized glot-
tal flow, which is the topic of the present study.

Koreman, Boves & Cranen 1992 [6] used an elec-
troglottograph and a Rothenberg mask to measure and
analyse the influence of linguistic variations on the dy-
namics of the voice source characteristics.

Swerts & Veldhuis 2001 [18] investigated voice qual-
ity changes as a function of the intonation contour.
Their analyses are based on several productions of the
vowel [a] provided with different intonation patterns.

They found that F0 covaries with the amplitude differ-
ence of the first two harmonics and that this amplitude
difference interacts with the open quotient as well as the
skewness of the glottal pulse when analysed by means
of the Liljencrants-Fant-model [4].

These and other findings motivate a more holistic
approach to the parameterization of the glottal flow.
In 2003 a new model was introduced by Mokhtari,
Pfitzinger & Ishi [10]: It applies a principal component
analysis (PCA) to a database of glottal-flow waveforms
for the purpose of analysing and reconstructing all un-
derlying glottal-flow waveforms from just a few principal
components. This approach was successfully applied to
the problem of laryngeal voice quality conversion [11]
which in the past was addressed, rather, by means of
e.g. code(-book) excited linear prediction (CELP) [2].
Therefore, it serves as the preferred analysis framework
during the current investigation.

2 Method

The aim of the present study is to measure and analyse
the effect of speaker and phoneme class on the prosody
of voice quality as represented by the holistic PCA pa-
rameterization of laryngeal excitation [10].

2.1 Speech database

This investigation is based on a new speech database
originally designed for the evaluation of automatic GCI
detection (glottal closure instant, also called glottal ex-
citation impulse or glottal epoch). Therefore it consists
of 112 phonetically rich German sentences and 100 En-
glish sentences especially selected to provide an above-
average number of voice onsets and offsets.

Each part of the database was produced by 11 female
and 11 male native speakers, respectively. Thus, a total
of 44 speakers participated in the recordings. An EGG
(electroglottograph) was used to record laryngeal activ-
ity. The delay between the speech signal and the EGG
signal was reduced to approximately ±0.05 ms via cross-
correlation based delay compensation [17]. The speech
signals together with the EGG signals of 396 utterances
(9 sentences times 44 speakers) were subjected to auto-
matic GCI detection with careful manual re-adjustment
of all marks. Additionally, the speech material was seg-
mented on a phone level using German and English
SAMPA symbols, respectively.
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Figure 1: Effect of the 1st to 4th principal component on the mean glottal volume-velocity waveform (left) and its
derivative (right). The mean cycle (solid) is averaged over 92,167 manually segmented glottal cycles of 44 speakers.

2.2 Glottal excitation parameterisation

The quasi-excitation signal was extracted via inverse fil-
tering: Standard autocorrelation-based LPC with a 98th
order polynomial, a pre-emphasis coefficient of -0.995, a
Kaiser window (β = 5) with 20 ms duration, and a step
width of 5 ms was applied to the speech signal. The
resulting filter coefficients were samplewise interpolated
[13] and then used to perform FIR-based inverse filter-
ing. The energy values of the LPC were ignored in order
to pass on the amplitude variation of the speech signal
to the white signal. Adaptive pre-emphasis [15] was not
used since, at the actual sampling frequency of 96 kHz,
1st-order emphasis is not sufficient to compensate for all
possible configurations of the spectral slope.

The resulting quasi-excitation signals were cut on a
glottal cycle level according to the manually corrected
GCI marks, yielding 92,167 glottal cycles. Following
source-filter theory of speech production [9, p.6] these
signals correspond to the glottal flow derivative while
the glottal flow is achieved via subsequent mathematical
integration. To make start and end samples equal for
each glottal cycle and thus avoid any skewness, prior to
integration the corresponding average amplitude value
was subtracted from each glottal flow derivative.

Then, 300 two-dimensional t-parameters (known
from computer graphics) were equidistantly distributed
along the path of the waveform of each of the 92,167
glottal flow derivative cycles. The extraordinarily high
number of parameters was chosen in anticipation of
speech synthesis to retain roughly the first 150 harmon-
ics and thus considering a spectral bandwidth of 15 kHz
at a hypothetical fundamental frequency of 100 Hz.

These parameters were submitted to principal com-
ponent analysis (PCA). But while in previous studies
[10, 11] the approach was restricted to single-speaker
data, to 30 parameter pairs, and up to 19,665 glottal
cycles, in the present study I significantly extended this
approach towards speaker- and language-independence.

3 Results

Fig. 2 shows that six principal components explain more
than 99% of the local glottal flow variation. The effect of
the first four principal components on the mean glottal
flow cycle and its derivative is shown in Fig. 1 which
substantially differs from Fig. 1 in [11] because, among
other details, PC1 and PC2 are roughly exchanged.
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Figure 2: Amount of variance of all 92,167 glottal
cycles explained by the first 6 principal components.
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To assess the relevance of the principal components
of the glottal flow with regard to speaker variability and
phoneme class the first and second principal components
are projected into a two-dimensional space.

3.1 Inter-speaker effect

Fig. 3 shows that in an PC1/PC2-space speakers are
perfectly clustered according to their gender. But this
is not remarkable since mean F0 of female versus male
speakers does not overlap albeit not as clearly clustered
as in the principal components based scatter plot. As
also can be seen in Fig. 3, the standard deviation as well
as the circumference of the gender-specific distribution
of principal components of female speakers is smaller
than that of male speakers.

It is possible that this difference is due to the roughly
equal F0 range of female and male speakers in the loga-
rithmic frequency domain, since the covariation of some
principal components with glottal period duration then
leads to a larger variation when the period is longer.
But there is evidence that this is not a sufficient expla-
nation since the standard deviations of all speakers have
roughly the same magnitude, only the female speakers
are less widely distributed in the PC1-PC2-space. One
could speculate that the voice qualities of female voices
are more similar than male voices.

3.2 Segmental effect

Fig. 4 shows the influence of phoneme class on the po-
sition of phones in the PC1/PC2-space for speaker 25.

Across speakers the arrangements of the positions of
phones in the PC1/PC2-space are non-uniform. A pos-
sible reason is that acoustic variation of actual phonetic
realisations within a phoneme class is to a large extent
due to speaker-specific production strategies [7, 12].

But it is worth noting that within a speaker similar
phones are clustered: on the left side of Fig. 4 are labial
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Figure 3: Scatter plot of mean PC1 versus mean PC2.
PCs are averaged for each speaker separately.

Underlying horizontal and vertical lines represent
standard deviations (male: light bold lines).

(v, m) and alveolar (d, n, l) phones, at the top are high
front vowels (I, i:, i), at the bottom open vowels (A:,
aI, aU) and in the center are central vowels (@, @U, e@,
eI). Phones represented by less than 50 glottal cycles are
omitted from this diagram.

Generally, phone-dependent variation of the white
signal is regarded as a weakness of the LPC since it is
basically a linear pole-modelling method. Consequently,
zeros are assigned to the excitation signal. However, in
[15] I investigated the influence of various, also nonlin-
ear, inverse filtering techniques on the residual signal. It
turned out, albeit informally, that none of the investi-
gated methods significantly reduced phone-dependency,
which supports the present assumption that the excita-
tion signal is to a certain extent phone-specific.

3.3 Macro- and micro-prosody

The scores of the first three principal components were
transformed into time-domain signals, i.e. the samples
of each glottal cycle of the original excitation signal were
replaced by its corresponding PCA score leading to, for
each principle component, an individual time function
synchronous to the speech signal.

As an example how our PCA-based glottal flow
model represents the local variation of voice quality,
Fig. 5 shows the utterance “His blood grew hot with
rage at the thought” with F0- and amplitude contours
as well as the first three principal component contours.

A remarkable property of the resulting contours is
that successive values are not randomly fluctuating but
highly correlated. This gives rise to expect reliable
trends and assume meaningfulness.

These signals contain segmental and supra-segmental
variation. Therefore, a lowpass-filter with a cutoff fre-
quency of 2 Hz was used to extract the slowly varying
prosodic information on voice quality, while the residual
contains the micro-prosodic variation caused by phone-
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Figure 4: Scatter plot of mean PC2 versus mean PC3
for female speaker 25. PCs are averaged for each

SAMPA phone separately. Underlying horizontal and
vertical lines represent standard deviations.
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Figure 5: “His blood grew hot with rage at the thought” (female speaker 23) with manual phone segmentation. From
top to bottom: speech signal, F0, amplitude, low- and high-frequency components of the 1st, 2nd, and 3rd PCs.

specific voice quality settings, by coarticulatory effects
during phone-class changes, and also by voice-quality
jitter/shimmer.

Although the meaning of the supra-segmental PC
contours is far less obvious than e.g. F0 or amplitude
contours, three observations should be mentioned: 1)
the 2nd PC reflects the global declination, 2) the sen-
tence focus blood is accompanied by a minimum of the
contours of the 1st and 3rd PC, and 3) non-prominent
stretches of the utterance such as the initial word and
the last three words reach the highest values of PC1.

4 Discussion

A possible explanation for the observed phone-specific
voice quality variation might be twofold: i) the acous-
tic and mechanical coupling of the glottis and the vocal
tract yields unavoidable interaction, and ii) the actively
(but not necessarily intentionally) controlled changes
in voice quality are needed to produce the appropri-
ate phone quality. A typical example of the latter is
post-aspiration in the Indian language Gujarati. Going
that far, one could also regard the glottal plosive as a
segmental voice quality change with strong voice qual-
ity coarticulation between the adjacent phones. This
view is in accordance with the tenor of Firth’s theory [5]
of prosodies being more than only intonation contours,
manifesting also in the segmental structure of speech,
being one of the reasons for a specific segmental realiza-
tion or, more generally, for segmental variation.

Obviously, F0, amplitude, and voice quality param-
eters like e.g. the normalized amplitude quotient (NAQ)

[1] or the four Liljencrants-Fant-parameters [4] are not
directly correlated with any of the glottal principal com-
ponents. It is hard, if not impossible, to assign any im-
pressionistic interpretation to one of the PCs. Even the
most important PC, which explains 72% of the total
variance, encodes at least F0, amplitude, and “wave-
form smoothness”. But this should not be interpreted
as a shortcoming of the method. On the contrary, the
effect of the principal components on the mean glottal
flow resulting in a specific waveshape, reveals the covari-
ation of several important acoustic features.

Usually, they are measured and interpreted sepa-
rately. This practice is very common when studying in-
tonation. F0 is generally the only acoustic feature being
analysed, and to make matters worse, the only parame-
ter which is strongly manipulated in stimuli for studies
on prosody perception. The well-known interactions be-
tween the glottis and the vocal tract are ignored just as
much as the little-known F0-voice quality interactions.

In this regard, the holistic approach opens new possi-
bilities to manipulate speech features in a more natural
way. This approach maintains that acoustic parameters
are single independent variables only in the acoustic do-
main, but not in the perceptual domain. For example, a
stimulus with an algorithmically increased F0 gives the
impression of an unnaturally large vocal tract the higher
F0 becomes. Thus, an implicitly covarying vocal tract
length would lead to the perception of only F0 changes.
The same is expected to be true for F0 and voice quality.
This approach allows for single independent variables in
the perceptual domain and hence prepares for high-level
and higher-knowledge voice quality modelling.
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5 Conclusions

This paper presented methodological aspects as well as
data and empirical analyses of the multi-dimensional na-
ture of voice quality. 92,167 glottal cycles of 44 speakers
were subjected to principal component analysis to con-
dense multi-dimensionality down to less than 10 param-
eters. It turned out that 99.44% of the observed variance
is explained by the first six principal components.

Voice quality is speaker-specific and phone-specific
but also contains a prosodic component with its micro-
and at the same time macro-prosodic properties. While
until recently, voice qualities such as “creaky voice” have
been regarded as a static setting [8], the present study
enables detailed insights into the glottal flow variation
along successive glottal cycles and suggests the separa-
tion of micro-prosodic effects, e.g. caused by adduction
and abduction of the vocal folds at the onset and off-
set of voiced stretches of speech, from macro-prosodic
or supra-segmental effects, caused by covariation with
the F0 contour or the amplitude contour but also by
phenomena such as the pre-final lengthening phase of
an utterance which sometimes is accompanied by slowly
increasing breathiness. The presented methodology
could be regarded as both a new paradigm of covarying
prosodies and a practical advice how to significantly
reducing the only apparently infinite dimensionality of
prosody as already outlined in 2006 [16].

A very small fraction of the unexplained variance is
due to transient signals such as the bursts of voiced plo-
sives which are currently not separable from the glottal
excitation signal. Thus, at the present stage of the new
analysis method for the prosody of voice quality, these
transients occasionally cause outlier values in the micro-
prosody of the voice quality but due to their singular
nature the supra-segmental level is almost unaffected.

Acknowledgements

I am very grateful to Siemens AG, Munich for partly
supporting this work. I am also indebted to Nils Ülz-
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