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The aim of this paper is to derive the space-time velocity field in a cylindrical waveguide perfectly embedded in an
infinite medium and generated by an inside bounded beam. This beam is generated by an off-axis source. It is up to us
to generate non-axisymmetric waves. Vector Hankel transform and Fourier series are combined to decompose the
inside field into infinity of elementary cylindrical waves propagating in radial direction and planar waves propagating
in axial direction. Global resolution method and Generalized Debye series expansion are both used to calculate the

global cylindrical reflection and transmission coefficients.

waves are discussed.

1 Introduction

Many structures in civil engineering notably bridges and
nuclear power plants (NPP) must be regularly, strictly and
carefully controlled. The nature of such structures
necessitates a non-destructive testing procedure. This has
led many researchers to study ultrasonic guided waves
techniques among others for the purpose of non-destructive
inspection of structures. This technique is appealing
because it can provide a rapid, accurate and inexpensive
assessment in a wide range of industries. But, there are
some difficulties in applying this technique. One prominent
difficulty is the presence of elastic or viscoelastic
embedding medium. These embeddings tend to attenuate
the propagating energy. This can severely degrade the
performance of guided wave test with regard to test
sensitivity and the distance of propagation.

Generated guided waves can be controlled by source
loadings. Indeed, when a source loading is axisymmetric
and localized on the axis of revolution, only axisymmetric
waves are generated. But when a source loading is non-
axisymmetric or axisymmetric localised in an off-axis
position, the generated fields include all the propagation
waves. For both cases, the field amplitude depends on
source loading conditions.

Due to the complicated nature non-axisymmetric guided
waves, non axisymmetric sources loading is avoided in
non-destructive evaluation (NDE) applications. However,
there are some cases where only a part of bar is accessible
and thus only an-off axis source can be applied.
Additionally, when axisymmetric guided waves are
generated, the reflected waves from defects will be non-
axisymmetric due to the irregular geometries of defects. For
that reason, investigation of non-axisymmetric guided
waves becomes an interesting subject for both source
loading study and defect characterization.

Danthez et al. [1] have studied the propagation of
axisymmetric waves in a free cylindrical waveguide with
the aim of the NDE. This study has been extended by
Laguerre et al. [2] to include the propagation in a cylinder
embedded in an unbounded medium. They have shown the
existence of attenuation due to leakage in that medium.

In this paper, we study the propagation of non-
axisymmetric and axisymmetric guided waves in
cylindrical waveguide embedded in an unbounded medium.
A source can be moved for generating such a wave type.
A theoretical development based on Vector Hankel
Transform, Fourier series and Generalized Debye series is
carried out in Sec.3. This development is highlighted by
one numerical example in Sec.4. Numerical results and
discussions are presented in Sec.5. Finally, the conclusions
are mentioned in Sec. 6.
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Numerical results of the non-axisymmetric propagated

2 Problem statement

Let us consider an elastic, homogeneous and isotropic
cylinder of infinite length, radius b, and density 0. As

shown in Fig.1. A cylindrical coordinate system (7’, o,z ) is

chosen with the z-direction coincident with the axis of the
cylinder. This cylinder is embedded in an infinite elastic
medium which is homogeneous and isotropic.

X

Embedding medium
Waveguide x §f Source

(R Y /A SR SR

Receiver

Figl : Problem geometry

The source of characteristic radius a is localized in an off-
axis revolution of a cylinder. It is assumed that the source
distribution is of the circular axial symmetry in its own

basis (Ol,erl ,€4 )

3  Resolution steps

For detecting defects in a cylinder, it is useful to understand
the acoustic field generated by the source. One traditional
method for solving this problem employs a classical normal
mode expansion method [3-5]. But this method is not
suitable when there is transmission (leakage) into
surrounding medium with the shear velocity smaller than
that of the waveguide. In such a case, the orthogonality
relations underlying the normal mode expansion method are
not directly applicable. Instead of using this method, we
use here the integral transform method.

3.1 Vector Hankel Transform for decom-
posing an incident field

In the general case, the sound beam is non uniform in the
(r,60) plane which is parallel to the propagation direction.
The sound field of such an incident beam can be expressed
as the sum of infinite cylindrical waves by using the
combination of Fourier series and Vector Hankel Transform



[6-7]. The incident particle velocity vector ¥"can be
given thus by:

oo
0" (r,6,2) = Z B (1, 2)e™ (1)
where
b, (r,2) = [S(kr)V, (k.. 2)kdk, @)
0
g (/{:TT) is a 3x 3 matrix which is expressed as follows:
B‘Z (krr) B3 (krr) O
S(kr)=|B,(kr) B,(kr) 0 ®
0 0 B, (k.r)
where
Bl (krr) = Jn (krr)
1
B2 (kr’r) = E[Jnfl (kr’r) + Jn+1 (kr’r)] (4)
1
B3 (krr) = 5[_‘]n,—1 (krr) + Jn,+1 (k]?"):l
J,is a Bessel function of order n. n is the

circumferential number. The radial wavenumber £, is
related to the radial space frequency by k. =27zp.

The vector Hankel transform of the incident particle vector

velocity Vn(kr,z) is the amplitude of each of the

constituent cylindrical waves. When these cylindrical
waves are summed, they are mathematically equivalent to
the incident bounded beam amplitude distribution.

For the purpose of studying the influence of the
polarization, each cylindrical wave can be decomposed into

three partial waves: one longitudinal (L") and two shears
(T" and T.'). So V, (k,, z)can be expressed as a
function of cylindrical waves amplitudes which are
Ap, Ay and A7 respectively.

W’L (kr’ Z) — _kTA[rf (kr)efiZmULz + ZQ”QUTA% (kr)eﬂ?ﬂ"w]vz
Vv, (k,,2) = 2w, A} (k,)e ™™ + kAL (K

T

) e*i2ﬂ”w1vz

VI (k,2) = —i2mw, A} (k. )e ™ + k Az (k, e ?mre
)
where w, is the axial space frequency of L' and w, is

that of 7" and 1)" .

Since the knowledge of the beam field distribution in any
plane specifies completely the value of the

function V, (p,2). The most convenient plane to use is

the z =0 plane because the progressive term disappears
(eq (5)). Hence, by using the inverse vector Hankel

transform, V, (p) can be determined:
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o

27[! S (k,r)o, (r,0) rdr

0

(6)

Finally, injecting this equation in equation system (5), the
amplitudes A", A; and Aj, can be easily calculated.

The infinity of waves constructing the incident field will
propagate through the waveguide. These individual waves
undergo multiple interactions with waveguide/embedding
interface. Consequently, the resulting field in such point M
in the waveguide can be deduced from the incident vector
velocity field by:
Fo T — .

5 (F) = X [F(k)S(kr)V, (k.2)kdke™ @)

n=—co ()

F (kr)is the (3x1) transfer function vector of the

waveguide or more precisely of the part from the source to
the receiver point M (Fig.l). 7 =(r6,z)is the
displacement vector. We note that the time part is omitted
in this equation.

The total field can be expressed by:

U =1,E +Uy€y +V,E, (8)
Its norm can be written as:
8] = o7 + v + 7 o)

3.2 Global method resolution and Debye
series

The global method calculations give a global description of
the scattering. The multiple reflections at the surface
waveguide and transmissions through the interface
waveguide/embedding medium are not clear in the global
formalism. The connection between the global theory and
the ray acoustics is known as the Debye-series expansion.
The Debye-series expansion allows for the decomposition
of the global physical process in a series of local
interactions, which can bring a Dbetter physical
understanding than the global resolution.

The incident wave can be longitudinal (L"), vertical shear
(1}") or horizontal shear (1,"). Each engenders three

waves by reflection and three waves by transmission
through waveguide/embedding medium interface.

Continuity conditions at this interface lead to a linear
system of equations:

C'X;=pP .(i=LT1)) (10)
where
+ -lfr
n— n— n— n+ n n+
X3 = {XiL »Xmy o Ximy Xip > Xigy > Xy | (1n

The superscript # is for vector transposition.

The first three coefficients represent the global reflection
coefficient vector XR; .  The last three components

represent the global transmission coefficient vector XT'; .
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gn

represents the continuity matrix for each cylindrical

wave. Its components are expressed in appendix I. £7 1s
the velocity-stress vector of the source.

By extending the Generalized Debye Series used in 2D
study [2] for 3D study, the final explicit expression of

XR’ (indicated by sign - above) is:

X”’ n n N n

i LAl ) L TiL

n _ n n n n
Xtﬂ = Z wr, o T i (o (12)
X” N=1 r 7””’ n n

il L, 'nr? nT? iT

n

r'

i
wave by the waveguide/embedding interface, when i and j
are the incident and reflected wave type respectively. N is
the interactions number.

are the local reflection coefficients of a cylindrical

Eq.(12) retains explicitly the multiple interactions with the
interface.

4  Numerical example

For studying the non-axisymmetric waves, the source is
localized in an off-axis of the bar. A question can be asked:
can we generate these waves by only an axial excitation?

So, the velocity field is expressed in the source basis by:

i(nt)={0. 0. w.(n)] e

where, at z =0, v, is a bounded Gaussian beam which is

(13)

expressed as follows:

zr?
v, exp(——;j,n <aand@, € [0,2r]
v, = o (14)

0 otherwise

Y

By using the addition theorem [8] and the inverse vector
Hankel transform, the axial velocity component can be
written in the global basis after simplification as follows:

n=+oo

Z I 2 pav,e ey B, (27 pr)x

n=—oo

J, (27Z'pr0)ei"(0_6°)dp, re[0,b] and 6€0,27]
(15)

The propagation of the waves in the waveguide will create
radial, tangential and axial motions. The velocity field in
space-time domain can be expressed by:

|

J,27Qny) cosn (6 — ) e "> dp} B(f) 12t g
(16)

oo

j 2ﬂ'p n+X; 0{21)06_”0‘2”2 B, (27Qr) x

too  Foo

=2

n=0 _e

where: [ is the imaginary number ( [ 2 =-1),
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1if n=0
g: . H
24f n>0

Lif i=j
0if i#j’

p Z’f Z’ - j 07,‘ Z’j - 1’1”1—'2'”;1'72”1—1”
r(w)if i#j5 and i=1L"
() if i% and i =TT

Q=149
q

and

E(f)

oo

j e (t)e> dt

—oo

(17)
wheree (t)is a modulated Gaussian input pulse of a
constant carrier frequency f, and pulse width 27, centred

around time 7, > 0. Its mathematical expression is given

t—ty)
T

2

j sin (27 f.¢) (18)
The radius of the Gaussian pulse is chosen to be small
(¢ =2mm) for maximizing lateral surface interactions

in order to reveal the waveguide propagation effect [2].
The material parameters are given in the table below.

Material e (ms™) | en(ms)| p (kgm™) radius
(m)
Steel 5960 | 3260 7932 8.10°
Cement grout | 2810 | 1700 1600 oo

Table 1: Material parameters

5 Results and discussions

Applying the Fast Fourier Transform (FFT) in Eq. (16) and
equations given in abstract B with respect to z coordinate,

the velocity can be expressed in (7“, O,w,,f ) domain, where

w, is the space axial frequency.
The dispersion diagram is a representation of the velocity

w,, f).

the sake of clarity, we represent the image of |V| in the

V(r,6,w,f)=|v(r,6,zf)e* dz (19)

amplitude|V| as a function of frequencies( For

(wz,f) plane. The result of this representation is

illustrated by 2.a, 2.b, 2.c and 2.d figures. The first three
simulated dispersion diagrams are superposed with
dispersion curves (few lines). These curves are derived
from Disperse software which is based on modal solutions.
We observe a very good agreement between our dispersion
diagrams and dispersion curves L(0,m), T(0,m) and F(1,m).

Since the excitation is only longitudinal, the simulated
signal phase velocities describe only the portion of the
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dispersion curves greater than the velocity of longitudinal the coordinate 7, decrease. This is due to the reduced path

wave in steel ¢ . between source and receiver point.

In spite of the axial excitation (only the v, component is not

1 ‘ n=1
zero), all types of modes are excited: longitudinal L(0,m), 0sl
torsional T(0,m) and flexural F(n,m), »>0. The generation ‘
of flexural modes is due to off-axis source positioning. In osr
addition, in some cases, the non-axisymmetric wave 04f
amplitude (n > 0) is greater than that of axisymmetric 0.2r
wave. This is shown in Fig.3 which plots the maximum of 0 , e
the velocity amplitude as a function of the circumferential 02"
number # for 7, =5mm and r=8mm. 04l ‘ ‘%%”‘ - ‘
15 -0.6 NA
(a) (b) 08}
30 o 50 100 150 200
Time(us)
L Fig4: Time waveforms of velocity for the steel
s waveguide embedded in cement grout for n=1 and
% 20 some 7, (0.2, 0.5, 1, 2mm). The point receiver is at
= r=8mm, z=200mm and 6 =0.
R
L
7 (© (d)
E 3.0
FH .
6 Conclusion
2.5
A theoretical development of a three-dimensional bounded
0 beam travelling in a cylindrical solid waveguide embedded
in an infinite medium has been presented. This
B . ; o 2 s . s . development is based on a combination of Vector Hankel
w, (Cmfl) Transform, Fourier Series and Generalized Debye Series
(GDS). If the source is localized in an axis cylinder, only
Fig.2: Velocity dispersions diagrams (w,,f) and axisymmetric waves can be generated. Otherwise, non-
dispersion curves simulated by Disperse software for axisymmetric waves are generated. For some source
2, =110mm and f,=2.5MHz : (a) longitudinal modes positionning, their amplitudes are greater than thgt of the
L(0,m), (b) Torsional modes T(0,m), (c) flexural modes axisymmetric waves. Therefore, non-axisymmetric waves

deserve special attention when dealing with both source

F(1,m) and (d) total velocity (sum of all modes). loading and defect detection and characterization.
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w0 Appendix A: The matrix elements of
H H system (10)
o = any = —ppHR (00 + == H{™ (@)
0 1 2 3 4 5 6 7 8 9 10 1" 12 Qﬂ-b
Fig.3: Maximum of the amplitude velocity as a ag = —LHﬁbm)
. . . 27h
function of circumferential number n for 7, = 5mm .
It’s defined as a percentage of the greatest amplitude agy = ~iwH,"

velocity (n=1). o n(1l-n)
Qg1 = ’ ”,U (hzn —w’+ 5,9 H7(zm) —hHﬁf

. . . . (0] 27°b b
Figure 4 plots a normalized time waveform of velocity for
the steel waveguide embedded in cement grout for the nu (1 -n

2p,
— (m) m (m)
circumferential number n=1. A source is localized at many 51 = i\ b2 1,7 () + b 44 (0’)]

position 1, = 0 while 6, is fixed at zero for all cases. We

2uw ) n g
llal) (27[pﬂLH¢LZL1) (@) _;HﬁLm) (0{))

observe that the time waveform amplitudes decrease when ag =
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_ (m)
12 = Zan-H

(B)
agy = iwH, ()

agg = qu'fl,m) (IB)

2 n+1
o =2 o 20, ()L 12 (5)
a) 7h
2uw ' n+1
52 :7(;;%}[7‘]") (ﬂ)—T ) (ﬁ))
27 ng, 2 2
a2 = 224 B 0 ()~ g, ~ o 3 ()
iw \ 27h
n ,
a3 = 2—”be/") (B)
n
ay3 = @l _%H;zm)
a33 = 0
2zn n—=1 m rr(m) j
Upo = —— _dm g
43 i #(2”21)2 n (ﬂ) b n+l (ﬂ)
2
yri 9 n-n , q, ,
a53 = E[( m + 27Z'b2 ]Hém) _%H;Zﬁ)]
m=2, a=27xp, , [ =27q,.

(aij) , __are deduced from the below terms by using:
7 /1<4<6,4<5<6

» =27y,
multiplied by (-1).

m=1 ,B=2mq and all terms will be

Appendix B: Radial and tangential
expressions velocity

Both radial and tangential velocities can be expressed by:

v (1) = isfv]? (r,2),(27Qny) cosn (6 —6,)

n=0 _oo

X B(f)e " df

with
v]’: (r,z):v;:’l (r,z)+ VZ’tl (r,z)+ VZ’I2 (r,z2) 5 k=r60
where
27rp(1+Xl’;(p))B3p+
li © " . ' . —i27w,z
v (r,z): (I)A, (p) 1271'le[’:1 (p)[qu —B;’] e ! dp
+27rqu;:2 (p)BY
. n g, 9,
2wy (1+Xt1t1 (p))[BZ’ —B;J
v:,l’tl (r,z)=°(f:AZ(p) +272'pXtrllt2(p)sz e_izﬂwtzdp

+27[thgl(p)B;71
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27rp(l+th2 (p)sz" +

yre (r,z) = J‘Af2 (p) i2”W‘Xt’;tl (p)[sz —Bf:| e—i27z'w,zdp
0

+2”thg[ (p)BY
and
—2np(1+ X (p))BY +
al < n . , , —i27Tw,z
VZ (l”,z): (j')Al (p) 1271'le;;1 (p)[qu - B! J e 1 dp
—2;rquZZ (p)B?
i27rwt(l+X;It1 (p))[B; -B!]
v;’ﬁ (r.2) :O(I:AZ (p) —27szt’It2 (p)B? e—IZIZ'Wtzdp
_Zﬂtht’Il (p)B;”
_27Z'p(1+X;;t2 (p)jBSP +
n,t r: n . _2 ;
vy (7,2) :IA,2 (p) 12”Wth’;tl (p)[B/-B!] b TWZ g
0
_2”%){%1 (p) By
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