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Abstract

For many audio applications, a process is required to obtain an accurate estimate of the fundamental and harmonics of periodic 
sections of an audio signal.  More generally, any digital version of a periodic signal can potentially have an associated fundamental 
frequency component, along with harmonics which are frequency components located at integer multiples of the fundamental.  In 
this description, the focus will be on audio applications and speech applications in particular, without loss of generality to 
applications outside the speech and audio domains. 

For speech, tracking and assessment of fundamental and harmonic frequencies can be a key step in accomplishing such tasks as 
automated speaker identification, speech data compression, pitch alteration and natural sounding time compressions and 
expansions.  Linguists and speech therapists also use such tracking and assessment for prosodic analyses and training.

Introduction 

Various methods of fundamental and harmonic frequency 
tracking have been proposed and developed, but most have 
been based on other low resolution techniques such as FFT 
and cepstral analyses [1].  This is as opposed to using super-
resolution frequency estimation as provided by the Matrix 
Pencil (MP) technique.  The prior art in the area of super-
resolution speech fundamental determination consists of the 
“super resolution pitch determinator” (SRPD) [2] and the 
“enhanced super resolution pitch determinator” (eSRPD) [3] 
methods.  Because these prior methods do not explicitly 
process a spectral representation or decomposition of the 
input audio signal, they are not considered to be in the same 
class as the MP Generalized Harmonic Indicator (GHI).  
However, the SRPD and the eSRPD do provide a baseline for 
comparisons when assessing the performance of an MP based 
GHI and will therefore be referred to in the context of 
performance.  Another method worth mentioning is an 
autocorrelation method described in [4].  In this paper the 
author emphasizes the comparison of the gross error, without 
comparing the deviation mean or the standard deviation, such 
as in [3] and used here.   

The purpose of the GHI is to determine, assess and track the 
fundamental and harmonic frequencies of consecutive time 
segments of a signal. 

Pre Processing 

As a pre-processing step to the GHI process,  the signal to be 
analyzed is first divided into consecutive overlapping or non-
overlapping frames.  Frame lengths and overlap percentages 
are typically chosen to be consistent with the stationary 
properties of the signal to be analyzed.  In particular, multiple 
periods should be present in the segment, but the number of 
periods should not be arbitrarily large otherwise the 
fundamental and harmonic values may deviate excessively.  
Also, choosing too many periods can cause the computational 
complexity of super-resolution techniques to become 
prohibitive.  Therefore, for this experiment it was determined 
that a frame size for a male speaker is near optimal at 25.6 
ms, with a 50% overlap, corresponding to a 12.8 ms time 
steps for the beginning of each frame.  For a female speaker 
the frame size is optimal at 12.8 ms, with a time step of 6.4 
ms.  Since a male speaker has a lower pitch period than a 

female speaker, it was necessary to use a larger frame size to 
capture the whole pitch period. 

For each segment, a second pre-processing step is the 
calculation of the super-resolution representation of the 
segment, as provided by signal decompositions as in the MP 
technique [5].  As stated in the previous sections the MP 
technique is particularly effective at determining the 
frequency content of the signal, and includes frequency, 
decay rates, initial phases, and initial amplitudes in the 
decomposition.  For each frame, 28 poles in the forward 
mode were determined to work well. 

In a third and final pre-processing step, available decay and 
initial amplitude values are used to prune the original list of 
frequencies that the super-resolution process provides from 
the segment being decomposed.   Frequencies that are too 
close to each other within the frequency resolution of the 
technique are eliminated.  Likewise, frequency values that are 
not tone-like due to non-trivial decay (or growth) values are 
also eliminated.  Therefore, poles with an absolute value of 
the decay coefficient less than .01 were also eliminated.  Any 
zero valued frequencies that may result are also eliminated.  
The final pruning is the elimination of frequency values 
associated with trivial initial amplitudes relative to the 
number of bits of precision in the representation of the 
digitized signal.  Therefore, poles with an amplitude less than 
1/216 were eliminated.  The result is a list of frequency 

values L , which serves as input to the GHI process.  
Reference is made to Figure 1 for a description of the GHI 
process which consists of the sequence of steps that follow. 

Voiced/ Unvoiced Detection 

In speech analysis, the voiced/unvoiced decision is often 
performed in conjunction with pitch analysis.  The linking of 
the voiced/unvoiced decision to pitch analysis not only results 
in unnecessary complexity, but makes it difficult to classify 
short speech segments which are less than a few pitch periods 
in duration [6].  Therefore, it is better to classify a speech 
frame as voiced speech, or unvoiced speech, separately from 
estimating the pitch. 

A voiced frame consists of a fundamental frequency with 
several related harmonics.  An unvoiced frame does not have 
this property.   A voiced/unvoiced detector determines if a 
speech frame is voiced or unvoiced.  A voiced/unvoiced 
detector can rely on a few parameters to accomplish its goal.  
These parameters are energy, zero crossing, or prediction 
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gain.  Relying on one parameter limits the robustness of the 
voicing detector.  Whereas, increasing the number of 
parameters will increases its reliability [7].   

In this experiment, the goal is to use a similar voiced detector 
that was used in [3].  This would make the comparison 
between the two pitch estimation algorithms fair.  In [3] the 
author uses an energy based detector that uses a threshold.  
The singular values from the SVD are related to signal 
energy; therefore, they can be used by a voiced detector.   
Also, since the SVD is already used in the calculations of the 
MP algorithm, there is little or no processing overhead to use 
it as a voiced detector.  To determine a voiced frame from an 
unvoiced frame, a threshold is needed.  The maximum 
singular value of the frame is compared to the threshold.  The 
frame is classified as an unvoiced frame if the threshold is 
larger than the maximum value.  Otherwise, it would be 
classified as a voiced frame.  This threshold is varied until the 
voice in error is the same as in [3].   This provides for the 
comparison of the pitch results in a fair way.   

GHI Algorithm 

The GHI process is shown in Figure 1.  After the MP 
algorithm generates a set of frequencies for a given frame, 
preprocessing eliminates some frequencies as previously 

described. The result is a list of frequency values L , which 
serves as input to the GHI process.  The n elements of the nx1 

list vector L  are ordered in the Frequency Sorter, for example 
in ascending order, to form the ordered frequency list vector, 

F .  The nx1 vector F  is then input to the Column 

Duplicator, which forms the nxn matrix F  by replicating F
for each column of F .  Thus TF1F , where T1  is a 1xn 
dimension row vector, the elements of which are all 1.  The 
frequency matrix F  is then input to the Candidate Generator, 
where the nxn matrix of candidate fundamentals, D  is formed 

as TFFD .  When ascending ordering is used for F , the 
matrix D  can be represented as the sum of an upper triangular 
matrix and a lower triangular matrix,  
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Figure 1: The Generalized Harmonicity Indicator. 

and will have diagonal elements that are each zero. Thus the 
elements below the diagonal for the described ascending 

ordering will be the frequency differences which can be 
used to determine the fundamental and harmonics in 
subsequent steps.   

The matrix D  is input to the Pre-validator which forms a 
vector D  whose elements are chosen from the positive 
elements of D  that are greater than some minimum value, 

0minf .  The elements of the mx1 vector D  are arranged in 

ascending order and will result in nnm 5.05.0 2 . The pre-

validated candidate fundamental list, D , is then input to the 
Group Averager, which produces both a vector of averaged 

groupings of fundamentals, G , and an associated count 

vector, C .  To generate the groupings, G , group boundaries 

are formed by inspecting the elements of the candidate 
fundamental list, D .  Starting with the second element of D ,
a difference is formed  between each current element and the 
previous element in the vector.  If this difference is less than a 
fraction 

1p  times the current element, then the element is 

grouped with the prior element.  Otherwise, a new group is 
started with the current element.  The parameter 

1p  is 

typically chosen to be 0.1 (10 percent).  Because elements are 
in ascending order, each group represents a distinct positive 
change in candidate fundamentals.  For each defined group, 
the number of elements in each group are used as the 

elements of the count vector, C .  Using these counts, groups 

of candidate fundamentals are averaged to form the 

corresponding elements of the vector G .  Averages greater 

than the parameter 
maxf are not allowed, and likewise the 

corresponding elements of the count vector C  are eliminated.  

The group average vector, G , and the count vector, C , are 

both input to the Average Fundamental Selector.  If after such 

processing there are no elements in G , then it is arbitrarily 

assigned a single element equal to 
maxf , and the count vector 

C  is assigned a corresponding single element equal to a 

count threshold, tc .  For example, the count threshold for the 

speech pitch estimation application was set to 3.  From the 

group average vector, G , a subset of elements is chosen 

which correspond to the largest elements of the count vector, 

C , greater than or equal to the count threshold 
tc . For the 

speech pitch estimation example application, the elements 
corresponding to the 3 largest counts are used.  The initial 
fundamental estimate, 

0
, is chosen as the minimum of the 

group averages from the subset.  The count, c , is chosen as 

the largest count.  Thus the Average Fundamental Selector is 
biased away from simply using the largest group average.  
This results in an enhanced selection process that allows for 
the possibility that a valid fundamental is not the one 
associated with the largest count. 

The scalar value initial fundamental, 
0
, and the associated 

count, c , are input to the Sub-harmonic Searcher.  The Sub-

harmonic Searcher forms the nx1 sub-harmonic candidate 
vector as 15.0 0FS  and uses this vector to determine 

whether or not 
0
 should be reduced by a factor of 0.5.  

Reduction is performed if 
05.0  is greater than 

minf  while at 

the same time, the minimum of absolute values of the 
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elements of S  is less than 
025.0 p .  Here, 

2p  is a fractional 

parameter that restricts the search space.  A typical value for 
this parameter is 0.1 (10 percent).  The resulting output of the 
Sub-harmonic searcher is designated as 

0
, and represents the 

fundamental estimate prior to optional refinement processes. 

The pre-refined fundamental estimate, 
0
, is input to the 

Fundamental Refiner.  A pair of nx1 error vectors are formed 
as 1)1(01 fFE  and 10FE .  Here, )1(0f  is the 

refined fundamental estimate from the previous signal 
segment, and F  is the ordered list vector from the output of 

the Frequency Sorter.  Thus the 1z  block represents a unit 
segment delay.  A scalar, )1(03 fpx , is also calculated and 

is used to restrain the refinement process.  Typical values for 
the fractional parameter 

3p  is also 0.1 (10 percent).  A 

comparison is made to determine if the minimum of the 

absolute values of the elements of E  is less than the 
minimum of the absolute values of the elements of 

1E  and is 

also less than x.  If so, 
0f  is the element of F  associated 

with the minimum of the absolute values of the elements of 

E .  If both of these conditions are not met, then 
00f  (no 

refinement is made). 

The output of the Fundamental Refiner, 
0f , is input to the 

final optional step, the Harmonic Refiner.  This step is 
identical in form to the Fundamental Refiner, and is repeated 
for all harmonic frequencies of interest.  For example a 
harmonic is formed as the product 

0kfk
 , where the 

integer k is greater than 1.  A pair of nx1 error vectors are 
formed as 1)1(1 khFE  and 1kFE .  Here, )1(kh

is the refined harmonic estimate from the previous signal 

segment, and F  is the ordered list vector from the output of 
the Frequency Sorter.  A scalar, )1(3 hhpx , is also 

calculated and is used to restrain the refinement process.  
Typical values for the fractional parameter 

3p  is also 0.1 (10 

percent).  A comparison is made to determine if the minimum 

of the absolute values of the elements of E  is less than the 
minimum of the absolute values of the elements of 

1E  and 

is also less than x.  If so, 
kh  is the element of F  associated 

with the minimum of the absolute values of the elements 

of E .  If both of these conditions are not met, then 
kkh

(no refinement is made). 

Results

Shown in Table 1 are the performances results for the MP 
GHI process for the application of speech pitch estimation 
which in the present context refers to fundamental 
frequency estimation.  The top half of Table 1 refers to 
results from male speech and the bottom half refers to 
female speech.  The speech database that was used, is 
described in [3], and was downloaded from the author’s 
website [8]. This database consists of a female and male 
speaker each speaking 50 English sentences sampled at 20 

kHz.   This database includes the recording of laryngeal 
frequency for each speech file in the database, which acts 
as the ground truth for fundamental estimation.  This 
laryngeal data was created by placing a sensor on the 
subject’s throat, while the speech data was collected.  As 
previously described, a special property of speech is the 
fact that each segment of an utterance can be classified as 
either voiced or unvoiced.  As implied, the voiced 
segments of the speech are segments that contain 
fundamental and harmonic frequency content, whereas 
unvoiced segments are either silence or fricatives and 
plosives.  These latter segments contain either weak or no 
fundamentals and harmonics. 

The ground truth given in this database consisted of the 
voiced frames time locations and their respective 
fundamental frequency.  In this experiment, the start of 
each frame was slightly different than the ground truth 
time marks. Therefore, there was a need to adjust the 
ground truth to correspond to the beginning of each frame.  
The ground truth data fundamental frequency was 
interpolated for each sample.  Once the data was 
interpolated, an interpolated fundamental frequency was 
determined by locating the beginning time of each frame.  
This allowed for one to adjust the frame size of the 
experiment and determine which frame size was optimal.  

To properly take into account the voiced/unvoiced 
classification process, Table 1 and 2 includes the 
percentage of voiced segments in error (voiced classified 
as unvoiced) and the percentage of unvoiced segments in 
error (unvoiced classified as voice).  This is necessary for 
a fair comparison because misclassifying voiced segments 
can affect important performance metrics, such as the 
absolute deviation mean and population standard deviation 
(p.s.d.).  For example, a higher voiced in error percentage 
will cause the mean and p.s.d metrics to improve (become 
lower) as a result of eliminating weak voiced portions of 
the signal in the metric calculations.  Likewise, higher 
unvoiced in error percentages will cause the metrics to 
degrade (become higher) as a result of including unvoiced 
segments in the calculations.  This can be seen in Table 2, 
which shows the results of the MP GHI when using 
different threshold for the SVD voiced/unvoiced detector. 
The absolute deviation mean (adm) per utterance is 
calculated as 

jN

i
ijij

j
j ff

N
adm

1

^1 , (1) 

where 
ijij ff

^

and,  is the actual and estimated fundamental 

frequency respectively for sample i, and
jN  is the number 

of samples in utterance   j. The population absolute 
deviation mean is expressed as 

K

j
jadm

K
adm

1

1 .  (2) 

Where K is the number of speech signals in the population.  

The standard deviation ( jsd ) per utterance is expressed as  

Acoustics 08 Paris

8844



          

Method 

Unvoiced 
in error 

(%) 

Voiced in 
error
(%) 

Gross high 
errors 

(%) 

Gross 
Low errors 

(%)

Absolute 
deviation 

(Hz) mean 

Absolute 
deviation 
(Hz) p.s.d. 

SRPD 4.05 15.78 0.62 2.01 1.78 2.46 
eSRPD 4.63 12.07 0.90 0.56 1.40 1.74 

MP GHI 2.88 12.08 0.96 1.07 1.67 2.16 

SRPD 2.35 12.16 0.39 5.56 4.14 5.51 
eSRPD 2.73 9.13 0.43 0.23 4.17 5.13 

MP GHI 0.89 9.06 1.09 0.22 3.02 3.91 
Table 1: Fundamental estimation evaluation for male speech (top) and female speech (bottom). 

MP GHI 
SVD

Threshold 

Unvoiced in 
error 
(%) 

Voiced in 
error 
(%) 

Gross
high 

errors 
(%) 

Gross
low

errors 
(%) 

Absolute 
deviation (Hz) 

mean

Absolute 
deviation (Hz) 

p.s.d.

1.0 12.32 2.05 1.51 2.36 2.09 2.84 
1.5 8.77 4.10 1.44 1.93 2.01 2.74 
2.0 6.10 6.40 1.33 1.60 1.91 2.59 

2.5 4.15 9.14 1.00 1.34 1.80 2.41 
2.75 3.64 10.55 0.97 1.26 1.74 2.31 

3.0 2.92 11.80 0.94 1.08 1.68 2.17 
3.03 2.88 12.08 0.96 1.07 1.67 2.16 

3.1 2.74 12.65 0.98 0.92 1.65 2.11 
3.2 2.57 13.2 0.98 0.94 1.64 2.09 

1.0 2.50 4.24 2.02 0.59 3.51 4.91 

1.5 1.57 5.79 1.43 0.47 3.32 4.55 
2.0 1.11 7.6 1.28 0.29 3.14 4.17 

2.25 0.96 8.65 1.12 0.25 3.05 3.97 
2.33 0.89 9.06 1.09 0.22 3.02 3.91 

2.38 0.84 9.31 1.08 0.23 3.00 3.87 
2.5 0.75 9.88 1.03 0.16 2.94 3.70 

Table 2:  Fundamental estimation evaluation for male speech (top) and female speech (bottom) with varying 
thresholds for the SVD voiced unvoiced detector 

Gender Unvoiced in 
error 
(%) 

Voiced in 
error 
(%) 

Gross 
high

errors 
(%) 

Gross
Low 

errors 
(%) 

Absolute 
deviation (Hz)  

mean 

Absolute 
deviation (Hz) 

p.s.d.

male 0 0 3.57 2.50 2.15 2.91 

female 0 0 9.67 1.05 3.79 5.46 
Table 3: MP GHI fundamental estimation evaluation during perfect detection. 

jN

i
jijij

j
j admff

N
sd

1

2
^

1

1 ,            (3) 

and the p.s.d as  
K

j
jsd

K
dsp

1

1
..

. (4) 

As seen in Table 1, the voiced in error is the same 
for the eSPRD and the MP GHI.  The performance 

is commensurate with prior super-resolution 
techniques. 

The gross error, the metric used in [6], represents 
outliers of the estimated fundamental frequency.  
This metric does not measure the method’s 
resolution.  Gross high errors are the percentage of 
estimated fundamental frequencies that are 20% 
greater than the actual.  Likewise, gross low errors 
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are the percentage of estimated fundamental 
frequencies that are 20% lower than the actual.  As 
seen in Table 1, the MP GHI is commensurate with 
the eSRPD and SRPD methods in the gross error 
metric.  
The last results that are worth examining are based 
on perfect detection results.   Perfect detection is 
when the voice/unvoiced detector correctly 
classifies every frame.  Unfortunately, [3] does not 
examine this test.  As seen in Table 3, the results 
are very good.  The male results are very 
impressive; whereas the female’s gross high has 
increased significantly.  This may be a concern, but 
without eSPRD results to compare with, this is left 
as an open question.   

Conclusions

The MP GHI process is a novel approach to 
estimating, tracking and assessing the fundamental 
and harmonic frequencies of a speech signal.  Pitch 
Estimation is a key step in accomplishing many 
speech processing applications, such as automatic 
speaker identification, speech data compression, 
pitch alteration, pitch prediction and natural 
sounding time compressions and expansions.  The 
GHI could also be applied to other types of signals 
that are periodic in nature. 

The GHI process is computationally efficient in that 
it consists of a small number of trivial matrix 
calculations and comparisons.  In many signal 
processing applications, signal decomposition such 
as the MP technique may already be required.  
Therefore, the computational efficiency of the GHI 
process can be easily leveraged by these signal 
decomposition processes.  Also, the GHI process 
can be implemented as a real-time process, in that 
an output fundamental and harmonic estimate can 
be generated for each signal segment, without the 
need to wait for future segments to be processed. 

The GHI process is not confined to any particular 
super-resolution signal decomposition, but is 
particularly suited to the MP technique due to its 
ability to pre-condition the decomposition, based on 
decay or growth rates, frequencies, initial phases, 
and initial amplitudes.  The GHI allows for super-
resolution tracking of both the fundamental and 
harmonics.  It does not require a fundamental 
component to actually be present in the original 
signal, since the fundamental candidates are 
generated based on the spacing between frequency 
components.  A variety of outputs are provided 

including average fundamental, 0 , harmonic 

assessment count, c, refined fundamental and 
harmonic estimates, all of which can be more useful 
as a group as opposed to methods that simply yield 
the fundamental estimate itself.  Tracking is 

enhanced as a result of incorporating the estimates 
of fundamental and harmonics from the previous 
signal segment.  Finally, because the GHI process 

uses the super-resolution list, F , for refinement, the 

output harmonic estimates, kh , can be used to 

assess inharmonicity.  Inharmonicity occurs when 
the harmonics are not exact integer multiples of the 
fundamental, and can be fairly common for 
example in musical instruments. 

The GHI has many advantages as discussed.  These 
advantages, in addition to the results that were 
observed, demonstrate that the MP GHI is a very 
attractive pitch estimator.  
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