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An information-based sensor management framework is discussed that enables the automated tasking of a suite 
of sensors when detecting static targets.  The sensor manager chooses the sensors to use and the grid-based 
locations to observe in order to maximize the expected information gain that will be obtained with each new 
sensor observation.  Initially, sensor probabilities of detection and false alarm, Pd and Pf, are assumed to be 
known by the sensor manager.  In a field setting, however, Pd and Pf cannot be known exactly, and so uncertainty 
modeling for Pd and Pf is also discussed.  The sensor manager is tested on real landmine data using 
electromagnetic induction (EMI), ground-penetrating radar (GPR), and seismic sensors.  A matched subspace 
detector is used to process the EMI data, an adaptive pre-screening algorithm based on the least mean squares 
(LMS) adaptive filter is used to process the GPR data, and whitening followed by an energy detector is used to 
process the seismic data.  The sensor manager is able to detect the landmines more quickly and more effectively 
than an unmanaged, blind-search approach.  Using all three sensor modalities also results in superior detection 
performance to that achieved by only a single sensing modality. 

1 Introduction 

In recent years, many remote sensing applications have 
seen a dramatic increase in the number and quality of 
available sensors.  A human operator can be overwhelmed 
by the number of sensor tasking decisions that need to be 
made when many sensors are present or when many 
conflicting mission goals must be best fulfilled given a 
constrained amount of resources.  Furthermore, in many 
military applications, a human operator is placed in harm’s 
way when operating a suite of sensors.  Automated sensor 
management techniques have therefore been explored for 
the purpose of assisting or replacing a human operator in a 
complex or dangerous operational environment [1-3]. 
In previous work, an information-based sensor management 
framework has been presented that directs a suite of sensors 
in a search for static targets within a grid of cells [4, 5].  
The sensor manager uses the Kullback-Leibler divergence 
as an information measure and functions by tasking the 
sensors to make the new observation that will produce the 
largest expected information gain.  When multiple sensing 
modalities are considered, the sensor manager determines 
whether it is beneficial to observe with all of the available 
sensing modalities or only with some of them.  This paper 
briefly reviews the sensor management framework.  In the 
following development, the sensor probabilities of detection 
and false alarm, Pd and Pf, will first be assumed to be 
known [5].  In a field setting, however, Pd and Pf cannot be 
known exactly, and so uncertainty modeling will also be 
discussed [4]. 
The sensor manager will be tested using a set of real 
landmine detection data that has been collected with three 
sensors:  an electromagnetic induction (EMI) sensor, a 
ground penetrating radar (GPR) sensor, and a seismic 
sensor.  The data from each of these sensing modalities is 
processed in order to obtain decision statistic outputs that 
are then operated on by the sensor manager.  A matched 
subspace detector is used to process the EMI data [6], an 
adaptive pre-screening algorithm based on the least mean 
squares (LMS) adaptive filter is used to process the GPR 
data [7], and whitening followed by an energy detector is 
used to process the seismic data. 
The remainder of the paper is organized as follows.  Section 
2 reviews the information-based sensor management 
framework and also discusses the use of uncertainty 
modeling for modeling unknown sensor Pd and Pf.  Section 
3 discusses the signal processing algorithms that were used 
to process the data obtained from each of the individual 

sensing modalities.  Section 4 will present simulation 
results from using the sensor manager on the real landmine 
data.  It will be demonstrated that the sensor manager 
outperforms an unmanaged, blind sweep technique and is 
able to detect the landmines more quickly.  It will be further 
demonstrated that the use of uncertainty modeling is able to 
improve the sensor manager performance over that obtained 
when the sensor Pd and Pf are modeled as certain.  Finally, 
Section 5 offer conclusions and a summary discussion. 

2 Sensor management framework 

2.1 Sensor manager 

This section will review the sensor management framework 
presented in [4, 5].  The sensor management framework 
uses M sensor platforms, each with D sensing modalities, to 
search for N targets in a grid of C cells.  Each of the grid 
cells has a binary state, either containing or not containing a 
target, which is denoted Sc = 0 or Sc = 1, respectively.  The 
state probabilities are initialized with a spatially uniform 
distribution so that P(Sc = 1) = N/C and P(Sc = 0) = (C – 
N)/C for each cell.  Observation k in cell c is written xc,k; it 
may also be written as xc,k,m,d, where m and d denote the 
sensor platform and sensing modality used to make 
observation k.  A sequence of observations xc,1, xc,2, . . . , xc,k 
is written Xc,k.  The sensors make binary observations—
either “target present” or “no target present”—with a 
known probability of detection and false alarm that is 
specific to the particular sensor making the observation: 
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After a sensor observation is made, the state probability of 
the observed cell is updated using Bayes’s rule: 
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The measure of information used by the sensor manager is 
the Kullback-Leibler divergence, which is defined for 
probability mass functions p and q as 
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The expected Kullback-Leibler divergence after one 
additional sensor observation may in fact be computed 
analytically, without requiring the sensor to physically 
make the observation, yielding 
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where Pc,k represents the state probabilities in cell c after k 
observations and Qc represents the prior state probabilities 
in cell c.  The expected information gain obtained with a 
new sensor observation is then given straightforwardly as 
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The notion of sensor cost of use was introduced in [5]; in 
the formulation of the sensor manager utilized in this paper, 
it will be assumed that the cost of use for each sensing 
modality is one.  The sensor platforms will then be tasked 
in the following way.  Each sensor platform will move to 
the cell that will produce the largest expected information 
gain for the first modality for that sensor platform.  Upon 
entering the cell, the first modality will be used to make an 
observation.  Subsequent modalities d’ will then be used to 
make an observation if they satisfy 

 ( ) ( ), , , ,1KL KLD c m d D c m′ ′Δ > Δ , (6) 

where c’ is the cell that will produce the largest expected 
information gain when observed with the first modality. 

2.2 Uncertainty modeling 

In a real-world sensing environment, the sensor 
probabilities of detection and false alarm shown in Eq.(1) 
are not certain quantities; they will in fact vary from day to 
day and from location to location, both locally and globally.  
It is therefore of interest to model the sensor probabilities of 
detection and false alarm as being uncertain.  Uncertainty 
modeling for the sensor manager has been presented in [4] 
and will be reviewed here. 
The beta distribution, which is the natural conjugate prior 
distribution for a binomial process (the process generating 
the observed data), is used to model uncertain probabilities 
of detection and false alarm.  The beta distribution is 
parameterized by r and k, which may be thought of as the 
number of successes and the number of trials, respectively, 
in a binomial process.  The beta distribution is defined as 
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With Pd and Pf described by densities, integration must be 
performed to determine the probability that a sensor will 
make a specific new observation: 
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A derivation, detailed in [4], then shows that 
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Uncertainty modeling changes the computation of the state 
probabilities and expected Kullback-Leibler divergence 
from Section 2.1; the observation probabilities given in 
Eq.(9) are used in both Eq.(2) and Eq.(4) when uncertainty 
is being modeled.  Since the beta distribution is the natural 
conjugate prior distribution for a binomial process, 
posterior densities for Pd and Pf are also beta distributions.  
For a beta distribution with prior parameters r’ and k’ and 
observed data with r successes (that is, “target present” 
observations) out of k observations, the parameters of the 
posterior beta distribution after collecting the observed data 
will be r’’ and k’’, with r’’ = r’ + r and k’’ = k’ + k. 

3 Signal processing algorithms 

The sensor observations for the sensor management 
framework presented in Section 2 may be considered to be 
thresholded decision statistic outputs from an arbitrary 
signal processing algorithm.  The sensor manager optimizes 
sensor tasking at the decision level, not at the data level.  In 
other words, the sensor manager is not attempting to 
optimize where the next piece of raw data should be 
observed in order to maximize detection performance for a 
specific signal processing strategy.  Instead, the sensor 
manager assumes that a sensor, when making an 
observation, will collect data over a point or a small region 
and make a decision about whether a target is present or not 
in that observed region.  The specific signal processing 
algorithms used may be designed completely independently 
from the sensor management framework.  As mentioned 
previously, the sensor manager will be tested using a set of 
real landmine data that was collected with three sensing 
modalities:  an EMI, a GPR, and a seismic sensor.  The 
signal processing algorithms used to process data from each 
of these three sensors will now be detailed. 

3.1 EMI sensor 

The EMI sensor used to collect data has dipole transmit and 
receive coils, and an auxiliary bucking transformer is used 
to cancel the mutual coupling between the transmitter and 
receiver [8].  Modeling of wideband EMI responses [9] 
motivates the use of a matched subspace detector to process 
the received EMI data [6].  The matched subspace detector 
functions in the following way.  Each type of landmine has 
a signature template that is learned from training data and is 
defined to span the subspace H .  It is assumed that 
received EMI data, x, is a scaled version of the template 
signature that has been corrupted by additive Gaussian 
noise.  Under these conditions, the decision statistic d, 
given by 

 
T

T
d = Hx P x

x x
, (10) 
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is the optimal detector.  The matrix PH in Eq.(10) is the 
projection matrix onto the subspace H . 

Each type of landmine has a differently shaped EMI 
signature.  Since the data under consideration contains 
several types of landmines, a template—and 
correspondingly, a subspace—is created for each type of 
landmine that might be present in the data.  Contingent on 
an energy-based template-specific pre-screening process, 
the received EMI data x is then processed through each of 
the matched subspace detectors, and the maximum of the 
individual matched subspace detector outputs is selected as 
the observed decision statistic.  The maximum matched 
subspace detector output is chosen rather than the sum of 
the matched subspace detector outputs in order to eliminate 
false alarms that occur when a clutter signature partially 
matches several of the different mine templates; this 
procedure is the equivalent of maximum a posteriori 
classification [6]. 

3.2 GPR sensor 

The GPR used to collect data uses resistively loaded vee-
dipole antennas that are well-suited to the landmine 
detection problem [10].  GPR data collected with the sensor 
is processed using an adaptive technique based on the least 
mean square (LMS) adaptive filter [7].  Before processing 
with the LMS adaptive filter, the raw data is pre-processed 
in a number of ways.  The data is first aligned at the 
location of the ground bounce, and the ground bounce is 
subsequently removed by time-clipping the data.  A median 
filter helps remove any interference that might be present in 
the data.  Finally, the data is depth-segmented so that 
processing may be performed on individual depth segments 
in order to mitigate the effects of energy attenuation due to 
propagation of the electromagnetic pulse through the 
ground. 
After the pre-processing steps have been completed, a two-
dimensional version of the LMS adaptive filter is applied to 
each depth segment of the data.  The filter is used to 
estimate the response at each individual pixel, beginning 
with the first down-track pixel and moving in the down-
track direction.  The LMS adaptive filter maintains a vector 
of weights, w, which are multiplied by an input signal, u, to 
produce an estimate, y, of the response that will result from 
input signal u: 

 T

n n ny = w u , (11) 

where n is the time index.  The estimated response, y, and 
the desired response, d, are then used to determine the 
estimation error, e: 

 n n ne y d= − . (12) 

Finally, the estimation error and the learning rate, μ, are 
used to update the weight vector: 

 1n n n neμ+ = +w w u . (13) 

The learning rate is a parameter that may be tuned to affect 
the rapidity with which the LMS weights adapt.  The 
weight vector and input signal are defined to be a group of 
pixel locations both in front of and behind the location of 
the pixel whose intensity is to be estimated [7].  When the 
LMS error as computed by Eq.(12) is large, that indicates 
the presence of a subsurface anomaly.  The output decision 

statistics are the sums of the LMS error energy across the 
various levels of depth segmentation, resulting in a cross-
track and down-track matrix of decision statistics over the 
ground surface. 

3.3 Seismic sensor 

The seismic sensor used to collect data consists of an 
electrodynamic shaker that generates seismic waves and a 
separate, radar-based non-contact displacement sensor that 
measures the displacement created predominantly by the 
propagating seismic surface (Rayleigh) waves [11].  When 
a seismic wave encounters a mine or other buried object, 
the structural and elastic properties of the object will cause 
perturbations in the surface displacement that will be 
measured by the displacement sensor.  The received seismic 
data is processed by whitening the data and then using an 
energy detector to produce the output decision statistics. 

4 Simulation results 

Now that the sensor management framework and signal 
processing algorithms have been presented, simulation 
results will be shown for testing the sensor management 
framework on the landmine data.  The landmine data 
consists of a 1.8 m by 1.8 m region containing six mines 
and twenty-one clutter objects representing a variety of 
sizes of metallic and non-metallic clutter.  The layout of the 
mines and clutter objects may be seen in Fig.1.  Since the 
sensor manager operates on a cell grid and since the sensor 
manager has further been designed assuming that only one 
object exists per cell and that objects do not straddle cells, a 
nine by nine grid has been manually positioned over the 
data collection region so that each cell contains at most one 
object and so that objects straddle cells as little as possible.  
Each cell in this grid represents an 18 cm by 18 cm region 
of ground. 

 
Fig.1  Nine by nine cell grid and object layout for landmine 

data.  Targets are represented by asterisks and clutter 
objects by circles.  The outer box represents the entire 

region of collected data. 

In the subsequent simulations, the observed sensor data will 
be generated by randomly selecting one of the ten largest 
decision statistic outputs in the observed cell for the sensing 
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modality making the observation.  The selected decision 
statistic will then be thresholded to produce a binary 
observation of either “target present” or “no target present.”  
Such a strategy is intended to emulate results that might be 
observed were a sensor to make multiple collections over 
the same region of interest.  Thresholds are selected for the 
three sensing modalities so that the overall operating 
characteristics of the modalities are Pd = 0.850 and Pf = 
0.323 for the EMI, Pd = 0.850 and Pf = 0.085 for the 
seismic sensor, and Pd = 0.950 and Pf = 0.056 for the GPR.  
The cost of use for all sensors is assumed to be one. 
In each iteration of the simulation, three identical sensor 
platforms will move through the cell grid guided by either 
discrimination-directed search (the sensor manager 
described in this paper) or direct search, which is an 
unmanaged technique in which the sensors blindly sweep 
through the grid in a predefined pattern, making one 
observation in each cell with each available sensing 
modality as they move.  The performance metric used in the 
results that follow is the probability of error, Pe.  To 
produce each plot, one thousand full realizations of the 
simulation will be performed and the results averaged. 
Fig.2 shows performance results for discrimination-directed 
and direct searches using different combinations of sensing 
modalities.  The EMI, seismic, and GPR sensing modalities 
are denoted S1, S2, and S3 in the figure legend.  Both 
discrimination-directed and direct search using all three 
sensing modalities obtain a lower probability of error than a 
search with only a single modality.  This result reflects the 
performance improvements that are typically available 
through multimodal sensing.  Furthermore, discrimination-
directed search using all three modalities outperforms direct 
search using all three modalities.  Use of the sensor 
manager presented in this paper allows the targets to be 
detected more quickly than they can be detected with a 
direct search technique. 
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Fig.2  Pe vs. cost performance for discrimination-directed 

and direct searches on the landmine data using the indicated 
sensing modalities. 

Uncertainty modeling as discussed in Section 2 is intended 
to model the fact that sensor Pd and Pf cannot be known a 
priori in a real-world environment and that Pd and Pf may 
furthermore vary on a local scale, from grid cell to grid cell.  
Simulations are now performed that incorporate uncertainty 
modeling into the sensor management framework.  Three 
different sets of parameters are used to model the beta prior 
densities on Pd and Pf:  k = 100, k = 10, and k = 5, which 

correspond to increasing levels of uncertainty.  In each 
case, the value of r is set to ensure that the expected value, 
r/k, of the resulting beta density equals the Pd or Pf value 
for the certain case.  Example beta densities for these three 
levels of uncertainty are shown in Fig.3. 
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Fig.3  Example beta densities for three different levels of 

uncertainty.  Each of the three beta density has an expected 
value of 0.3. 
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disc (S1,S2,S3): certain
disc (S1,S2,S3): k=100
disc (S1,S2,S3): k=10
disc (S1,S2,S3): k=5
disc (S1): certain
disc (S2): certain
disc (S3): certain
direct (S1,S2,S3)

 
Fig.4  Pe vs. cost performance for discrimination-directed 

search with uncertainty modeling compared to performance 
for discrimination-directed and direct searches without 

uncertainty modeling.  All uncertainty modeling curves are 
clustered with the certain discrimination-directed curve. 

Performance results for the sensor manager using 
uncertainty modeling are shown in Fig.4.  Notice that all of 
the uncertainty modeling curves cluster relatively closely 
with the discrimination-directed search curve without 
uncertainty modeling, meaning that discrimination-directed 
search with uncertainty modeling is outperforming direct 
search.  In fact, the uncertainty modeling curves actually 
demonstrate improved performance over discrimination-
directed search performance without uncertainty modeling, 
as may be seen more clearly in Fig.5.  The smallest amount 
of uncertainty, k = 100, provides only a slight gain over the 
performance that is obtained with no uncertainty modeling.  
However, the two higher levels of uncertainty modeling, k 
= 10 and k = 5, both provide a more substantial gain in 
performance.  After a total cost of 1000, for example, 
uncertainty modeling with k = 10 provides a 50% reduction 
in the probability of error. 
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Fig.5  Pe vs. cost performance for discrimination-directed 

search with uncertainty modeling compared to performance 
for discrimination-directed and direct searches without 

uncertainty modeling. 

Previously, the results in [4] demonstrated that sensor 
manager performance on uncertain simulated data will be 
improved by properly modeling the uncertainty that is 
present, and the results in Fig.4 and Fig.5 demonstrate a 
similar effect for real landmine data.  Even though the real 
data does not exactly follow the modeled distributions in 
the way that the simulated data did in [4], the beta 
distributions for Pd and Pf model the uncertainty present in 
the real landmine data with sufficient fidelity that a 
noticeable performance improvement is obtained through 
uncertainty modeling. 

5 Conclusion 

This paper has reviewed a sensor management framework 
that has been proposed for the efficient detection of static 
targets in a gridded region of interest and has considered 
the implementation of this framework on a set of real 
landmine data collected with EMI, GPR, and seismic 
sensing modalities.  The signal processing algorithms used 
to process each type of sensor data have also been 
presented.  Simulation results demonstrate that the sensor 
manager, operating on the decision statistic outputs 
produced by the aforementioned signal processing 
algorithms, outperforms a direct search technique and is 
able to obtain a lower probability of error after a fixed total 
cost.  The presented simulation results further demonstrate 
that modeling the sensor Pd and Pf values as uncertain 
quantities allows the sensor manager to perform even 
better.  These results both demonstrate the utility of the 
proposed sensor manager in operation on real data and 
reinforce the importance of modeling the uncertainty that 
will be present in real-world problems.  A further important 
note is that the sensor manager is not designed for use with 
a specific signal processing strategy; rather, as new and 
better-performing processing techniques become available, 
they may be easily incorporated into the overall system.  
The sensor manager will simply operate on the decision 
statistic outputs of the new signal processing algorithms. 
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