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It’s well known that the harmonic imaging quality can be improved by using sources that radiate narrower and 
attenuated sidelobes beams. Hence we try to enhance the harmonics’ cartography by studying different source’s 
power distributions. We developed a numerical code, using the spectral method, in order to resolve the parabolic 
wave equation. The numerical results were compared to the results given by Bergen code in order to validate our 
algorithm. Two source’s power distributions (exponential and Bessel beams) were studied and compared to the 
uniform case.  
The use of exponential source leaded to harmonics diagrams without sidelobes neither nearfield oscillations. But 
the beam width was increasing with propagation.  
The Bessel source presents a limited diffraction beam. The beam width is almost constant throughout the 
nearfield and the transition zone. The sidelobes had a weak level in the fundamental curves and they don’t 
appear in the second harmonic ones.  

1 Introduction 

The quality of images provided by ultrasound imaging 
systems is closely related to the radiation pattern of the 
source. It’s important to get the best resolution and the 
highest contrast. One can use focused source to improve 
lateral and axial resolution [1,2]. Recently harmonic 
imaging [3,4] was developed and gets better images quality. 
This is due to the fact that the harmonic beams are narrower 
and shows attenuated sidelobes [4]. 
However, image quality in terms of resolution and contrast 
still need to be enhanced. What leads researchers to study 
“adopized sources”. The adopization allows getting an 
arbitrary power distribution on the surface of the 
transducer. Hence exponential, cosine and Bessel shapes 
have been studied. The exponential sources present beams 
with no sidelobes. Cosine sources present narrower beams. 
Whereas the Bessel beams show a limited diffraction 
character.  
We studied the exponential aperture [5] and compared the 
obtained results to the uniform and cosine ones. The 
exponential beams showed more interesting characteristics 
for imaging applications than the two others sources. 
Recently, we studied cosine based apertures [6] which are 
written as )(cos /1 ξq  with q is an integer and ξ  is the 
transverse variable. The results were compared to Gaussian 
beams. We, hence, noted that the value of q can improve 
the cosine aperture’s features for imaging systems. Ding 
and Lu [8] presented the expressions of the fundamental 
and the second harmonic for a Bessel source. They showed 
that the second harmonic’s width is a half of the 
fundamental one. 
In the present study we compared the harmonic patterns of 
an exponential and a Bessel shaped sources. We developed 
a resolution code [6,9] for the Khokhlov-Zabolotskaya-
Kuznetsov equation (KZK). The algorithm is based on the 
spectral method and allowing computing for several source 
conditions. Our source is a cma 5.0= radius piezoelectric 
disc transmitting at the central frequency of 

MHzf 2.20 =  and with a power density of 1W/cm² in 
distilled water. 

2 Theoretical basis 

The KZK model [10,11] model is commonly used to 
describe non linear ultrasound propagation in a 
thermoviscous fluid. Many studies [12-16] dealt with 
integration of the KZK equation using spectral method. The 
most famous algorithm is the Bergen code presented by 

Aanonsen et al. [12]. Hamilton et al. [14] transformed the 
KZK equation to the transformed beam equation (TBE) in 
order to accelerate the integration in the farfield zone. The 
validity of the KZK model and the Bergen code has been 
proved by the experimental studies. 
Let’s consider the propagation of a wave through the z axis. 
From a circular source positioned at z=0. The parabolic 
equation is written in cylindrical coordinates [10,11]: 
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Where 0/ zz=σ , ar /=ξ  and 2²00 akz = is the Rayleigh 
distance, 

000 cfk =  is the wave number. D is the sound 
diffusivity, it accounts for viscosity, thermal conduction 
and relaxation. AB 2/1+=β  is the parameter of the 
ultrasonic nonlinearity, c0 is the small signal speed, ρ0 is the 
medium density at rest, and 

0czt −=τ  is the retarded time.  
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operator. 
The field pressure is written in terms of Fourier series as 
bellow: 
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We use the following discretization: 
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Where I and J are the maxima values of i and j respectively 
defining the maxima ranges of σ  and ξ  1( max =σ  and 

)10max =ξ .Injecting Eq.(2) and Eq.(3) into Eq.(1) gives: 
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N is the maximum number of harmonics considered in the 
integration, (pm-n)* is the conjugate complex of pm-n and 

0
2
0 2cDk=α is the linear absorption coefficient of the 

medium. 
The matrix T is: 
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Then the solution of Eq.(4) is  
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The inverse of T is calculated using the Thomas’ algorithm 
(or LU method) [17]. 
Our algorithm is initialized by the source conditions 
bellow: 
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f(ξ) is a function that describes the spatial distribution at the 
source. In the present paper we consider three shapes: 

• Uniform: 1)( =ξf , 

• Exponential: ( )2exp)( ξξ Bf −= , 

• And Bessel: ( )ξξ AJf 0)( = . 
A, B are parameters that permits to modify the distribution 
shape. The figure 1 shows these distributions for A=2.4 and 
B=3. The value of A is chosen to maintain only the Bessel 
function’s main lobe. And B’s value permits to have a small 
power gap at 1=ξ and also to maintain an exponential 
lobe sufficiently large. 
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Fig.2 Power distributions at the source for uniform, 
exponential and Bessel beam sources 

3 Algorithm validation  

In order to validate our algorithm we compare the results 
with those obtained by the Bergen code. The figure 3 shows 
the axial distributions of the fundamental and the second 
harmonic respectively. The curves show a good agreement. 
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Fig.2 Axial distributions of fundamental (top) and second 
harmonic (down) obtained by our code (solid) and Bergen 

code (dotted)  

4 Results and discussions 

The figures 3, 4 and 5 present the axial distributions of 
fundamental and second harmonic for the uniform, 
exponential and Bessel beam source respectively. The 
magnitude is normalized with respect to the maximum and 
the curves are presented vs. σ . 
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Fig. 3 The fundamental (solid) and the second harmonic 

(dotted) for the uniform source 
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Fig. 4 The fundamental (solid) and the second harmonic 

(dotted) for the exponential source 
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Fig. 5 The fundamental (solid) and the second harmonic 

(dotted) for the Bessel beam source 
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The exponential source (fig.4) shows no nearfield 
oscillations for both the fundamental and the second 
harmonic. The fundamental curve decreases from the 
source which is due to the diffraction effect and the energy 
transfer to the second and higher harmonics. The second 
harmonic maximum is close to the source. These results fit 
with the Gaussian beam propagation. Bessel source (fig.5) 
shows less amplitude oscillations in the nearfield zone. We 
can conclude here that the amplitude of the nearfield zone 
oscillations is related to the shaped of the source 
distribution.  
At the other hand the last maxima for both the fundamental 
and the second harmonic move according to the shape of 
the source distribution. We had reported this when we 
studied the cosine shape source [6]. 
The figures 6 to 8 and 9 to 11 show the transverse 
distributions of the fundamental and the second harmonic 
respectively for the studied sources in the nearfield 
( 16.0=σ ), at 33.0=σ , corresponding to the 
fundamental’s last maximum for the uniform source’s case, 
and the farfield ( 65.0=σ ). The magnitude is normalized 
with respect to the maximum and the curves are presented 
vs. ξ. 
The sidelobes, for both fundamental and second harmonic, 
are presents only in the case of the source uniform. It can be 
explained by the fast transition at the edge of the source 
which causes oscillations in the lateral distributions of the 
field. These phenomena suggested that a lateral propagation 
occurs. 
The exponential beam width increases from the source 
( 0=σ ) showing that no focusing effects occur. However 
it can be shown that the fundamental (fig. 7) is larger than 
the second harmonic one (fig. 10). On the other side the 
Bessel beams are less diffractive since their widths are 
slightly changing with propagation (fig. 8 and 11). 
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Fig.7 Lateral distributions of the exponential source’s 

fundamental 
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Fig.8 Lateral distributions of the Bessel source’s 

fundamental 
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Fig.9 Lateral distributions of the uniform source’s second 

harmonic 
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Fig.10 Lateral distributions of the exponential source’s 

second harmonic 
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Fig.11 Lateral distributions of the Bessel source’s second 

harmonic 

The second harmonic is narrower than the fundamental in 
all cases. Considering the lateral distributions of fig 6 to 11, 
the -3dB widths are given by the table 1. The values are 
calculated with respect to the source diameter. 
At the farfield ( 65.0=σ ) the uniform aperture presents 
the smallest width. However in the nearfield ( 16.0=σ ) 
this source presents the largest width for both the 
fundamental and second harmonic. However for the 
exponential source the fundamental and second harmonic 
show the narrowest beam in the nearfield ( 16.0=σ ) and 
the largest beam at 33.0≥σ . 
The Bessel beams show, at 33.0=σ , a narrower width 
than at 16.0=σ or 65.0=σ . Hence we note a focusing 
effect even for plane Bessel source. Further the second 
harmonic show a beam width that still under the limit of 
50% of the source diameter. This could be a good index for 
using the Bessel sources in the imaging systems.  
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The figure 12 shows the radiation pattern of the 
fundamental in the ( )ξσ ,  plan for the studied apertures. 
The Bessel source’s fundamental shows a quasi constant 
width and a reduced sidelobes throughout the 
region 6.0≤σ . In the exponential source case the 

fundamental beam is clearly enlarging since 3.0=σ . The 
uniform source’s fundamental present, in near field, a beam 
width almost constant but it shows high level sidelobes. 

 

 Uniform Bessel Exponential 

σ  0.16 0.33 0.65 0.16 0.33 0.65 0.16 0.33 0.65 
Fundamental 

(%) 66 26.5 53 44 37 69 33 50.5 103 

Second 
harmonic 

(%) 

66 17 34.5 38 27 48 24 40 76 

Table 1: -3dB beam widths for the fundamental and the second harmonic of the studied sources’ shapes 

   
Fig. 12 Fundamental radiation patterns for uniform (left) 

exponential (medium) and Bessel (left) aperture 

The figure 13 presents the spatial distributions of the 
second harmonic beams. 
In the exponential source’s case the second harmonic is 
generated earlier and enlarging with propagation distance. 
The Bessel source presents a narrower width in the 
transition zone ( 4.03.0 ≤≤σ ). Elsewhere the beam is 
slightly larger and shows attenuated sidelobes. 

   
Fig. 13 Second harmonic radiation patterns for uniform 
(left) exponential (medium) and Bessel (left) aperture 

5 Conclusion 

In this paper we developed an integration algorithm for the 
KZK equation. The code is based on the spectral method 
and allows studying several sources’ shapes. In order to 

validate the code the results are compared to those obtained 
by Bergen code. We noticed a very good agreement.  

Exponential and Bessel beams are the two source’s shapes 
studied. The results obtained by each of them are compared 
to those of uniform aperture.  

We concluded that we can choose a suitable distribution 
power on the source in order to minimize the level of the 
nearfield oscillations. We can also find a source shape 
leading to harmonic beam with less diffraction and 
attenuated sidelobes 

We noted that the studied Bessel source (A=2.4) presents, 
in the nearfield and the transition zone, a quasi constant 
beam width and attenuated sidelobes. This could favour this 
source vs. the exponential one whose beams are enlarging 
with propagation. 

The Bessel shape source’s features can be interesting for 
the medical imaging fields. Furthermore the production of a 
Bessel beam is difficult using a monodimensional PZT 
transducer. Yet the recent progress concerning the 
micromachined transducers [18] makes it possible to 
generate complex power distributions especially Bessel 
beams. 
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