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Some significant events in sports matches occur too quickly to be detected by conventional video.  Audio signals, normally 
sampled at a much higher rate, provide a way to detect such short events.   

Here, we employ approaches inspired by methods used in automatic speech recognition – use of templates of Mel Frequency 
Cepstral Coefficients (MFCCs) compiled over several adjacent time windows, together with Principal Components Analysis 
(PCA) – to classify sound events, including different tennis strokes, bounces of the ball, echos, speech and audience applause, 
occurring in the relatively controlled situation of major championship tennis matches. Good success rates were obtained for  
classification of the 1504 sound events in the available recordings. We go on to use Markov models to predict sequences of 
strokes (i.e. produce “synthetic rallies”) and combine the predictions of the acoustic classifier and the Markov model, using a 
Bayesian approach to produce a hybrid classifier. These approaches could yield valuable information, of benefit to spectators, 
match officials and coaches  in tennis and other sports ( including cricket, baseball and golf) , for making video games (such as 
the Nintendo Wii) more realistic and  also help identify “unusual” or “unexpected” salient sounds.   

1 Introduction 

Modern T.V. coverage of major sports events offers both 
home viewers and spectators watching “live” a wide range 
of views – from various camera angles and slow-motion 
replays – and additional information such as match 
statistics and the speed of, or distance travelled by, the ball. 
However, in some ball games – including tennis, squash, 
golf, cricket and baseball – the ball is typically in contact 
with the bat, racket or club for a few milliseconds [1] : a 
period rather shorter than the interval between successive 
video frames. This makes precise detection and analysis of 
the impact impossible from use of the video footage alone. 
Some systems – such as Hawkeye [2], now used in major 
tennis tournaments to decide whether the ball landed in or 
out of the court – make use of several video cameras 
working at a very high frame rate. However, such 
technology is expensive and highly complex.    
Detailed analysis of strokes, including mis-hits – whether in 
tennis, squash, golf, cricket or baseball -  could be highly 
valuable as a coaching aid. However, in order for this to be 
accessible to “club level” players and coaches, the 
technology required would have to be inexpensive and easy 
to use. 
An alternative to relying on video footage alone is to 
employ the acoustic signal(s) recorded during the match. 
Although there are several complications – including 
background noise, latencies due to the finite speed of sound 
and the effects of echos – all of which have to be allowed-
for, the acoustic signal is sampled at a much higher 
temporal rate than is normal for video frames (several 
thousand times a second as opposed to 25 or 30 times a 
second). This means that the acoustic signals offer the 
opportunity to detect and analyse events which take place 
over very short timescales – including racket, club or bat on 
ball impacts and bounces of the ball – and would thus be 
difficult or impossible to detect using conventional video 
footage. 
In this paper, we discuss our recent work on the analysis of 
the acoustic signals recorded with T.V. footage during a 
major tennis championship (Wimbledon 2005). We have 
used the video to “mark-up” notable “sound events” – 
including various types of tennis strokes, echos, bounces of 
the ball, audience applause, footsteps, speech and other 
vocalizations – audible on the sound signal and/or visible in 
its spectrogram. We have then made use of some methods 
inspired by techniques used in automatic speech recognition 
(matching of templates of Mel Frequency Cepstral 
Coefficients (MFCCs) [3]) and pattern recognition - 

Principal Components Analysis (PCA) [4],  Markov models 
and Bayesian decision-making [5] in an attempt to classify 
examples of these various types of “salient sound events” 
correctly. Our initial results are promising, suggesting that, 
at least in the relatively controlled environment of 
championship tennis matches, these techniques can be 
reliably used for the detection and classification of notable 
sounds. Although the problems are likely to be more 
challenging in less controlled situations, the methods we 
have employed may prove useful in wider applications, 
such as monitoring the well-being of sick or elderly people, 
or security surveillance (see, e.g.. [6, 7]). 

2 Audio-Visual Tennis Dataset 

2.1 Wimbledon 2005 Data 

Our data comes from TV broadcasts of four matches from 
the Wimbledon Lawn Tennis Championships of 2005, 
totalling over 95 minutes. We used the video footage to 
manually “mark-up” all notable “sound events” – over 1400 
in all, of which around 800 were tennis strokes. These were 
put into 14 classes : 9 different types of tennis strokes and 5 
categories of other sounds (see Table 1). 
The audio accompanying the video footage was sampled at 
48kHz, which allowed spectrographic analysis in the 
frequency range 0 – 24kHz .  

2.2 Play and Non-Play Sounds 

The “sound events” occurring during a tennis match can be 
broadly categorized into three types :  sounds arising due to 
the play of the game itself (including the sound of the 
racket on ball impacts from the various tennis strokes, 
bounce of the ball on the surface of the court, ) on court 
noise – speech from the players and match officials, grunts 
and other vocalizations from the players, echos and (from 
the 2006 and earlier championships) the “bleep” from the 
Cyclops system  used (at that time) to detect when the ball 
landed just out of court, or clipped the net) – and 
background noise : speech, other vocalizations (including 
cheering) and applause from the spectators, announcements 
and speech from the TV commentators, and “background 
noise” from outside traffic, aircraft flying overhead and 
similar sources. Fortunately, the latter category did not 
prove to be significant in our dataset. 
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Code Meaning 

S1 First Serve 

S2 Second Serve 

FD Forehand Drive 

BD Backhand Drive 

BD2H Backhand Drive Two Handed 

SM Smash 

VO Volley 

SS Stop shot 

LO Lob 

F Failure of Stroke 

W Stoke Wins the Point 

E End of rally 

BC Bounce of Ball 

EC Echo 

AP Applause 

SP Speech and other vocalisations 

SL Silence 
 

Table 1.  The codes we use in this paper for tennis stokes 
and other notable events : 9 distinct types of tennis strokes, 
5 other “sound events”, plus markers for a stroke failing, a 
stroke winning the point, and the end of the current rally. 

 

3 Previous Work in the Area 

3.1 Other Studies 

Previous studies on the automated identification of “salient 
sound events” have followed diverse approaches, with 
varying degrees of success. Although some have attempted 
methods based on template matching, these have not always 
achieved good results. For example, [13] found that an 
approach based on template matching did not work well in 
the context of detecting the sound of “dribbling” in 
basketball. This led to other authors, including [14], 
rejecting template matching as a possible method for 
detecting the sounds of tennis strokes, despite the acoustic 
environments of tennis and baseball matches being very 
different – in tennis, many of the salient sound events are of 
short duration (of the order of 10-20 ms) but separated by 
intervals of order 1 second, whereas in basketball the ball 
bounces can occur several times a second. Furthermore, 
audiences in basketball matches tend to be quite noisy for 
much of the time. In major tennis championships, the 
spectators are normally quiet most of the time – except in 
situations of highly partisan support (e.g. “Henman Hill” at 
Wimbledon in recent years) ! Although some authors (e.g. 
[15] studying golf strokes and [16] detecting bat on ball 
impacts in baseball) have used an approach which has some 
aspects in common with our “template matching” approach, 
they have only used the signal power in a very small 
number of frequency bands [16] or a very small number of 
MFCC coefficients in conjunction with a neural network 
[15].  Some authors have only tried to detect impulsive 
sounds [14, 17], not classify them. Several studies have 

used peaks in Short Term Energy (STE) - the signal power 
averaged over a very short time window [17, 18].  
Amongst the relatively small number of studies which 
attempt to classify different types of sounds [19, 20, 21, 22] 

(rather than just detect salient impulsive sounds), some only 
attempt to distinguish between radically different sounds 
[20] (periodic, impulsive, close to monotone or of very 
limited spectral range) and/or sounds of a small number of 
distinct classes (6 classes in the case of [19]). Zhang & Kuo 
[21, 22] used a “hierarchical” approach, using three levels 
of “coarse”, “intermediate” and “fine” discrimination 
between sound types. At the “coarse” level, they used the 
power, zero crossing rate and fundamental frequency of the 
signal to distinguish between speech, music, environmental 
sounds and silence. The second and third levels employed 
Hidden Markov Models (HMMs) to sub-classify each 
category (e.g. for speech, whether the speaker is an adult or 
child, male or female; for music which genre – classical, 
jazz, rock, etc. - the sample belongs to), followed by a 
“querying/retrieval” approach to identify the most similar 
“previously heard” sounds to the current example. 

3.2 Our Previous Work 

In our previous work on this topic [8, 9, 10], we studied the 
dependence of the time interval between successive strokes 
and the acoustic energy from the first of those two strokes. 
It was found that, as predicted by Newtonian dynamics 
(assuming that the acoustic energy was proportional to the 
kinetic energy imparted to the ball in the stroke which 
produced that sound), the logarithm of the energy was, to a 
good approximation, linearly dependent on the logarithm of 
the time until the next stroke [8]. This implies that the 
energy in the acoustic signal can be a reasonable predictor 
of the time when the next stroke occurs.  
We also considered the statistical distributions of both the 
acoustic energy and the time interval before the next stroke 
for various types of stroke [8]. Not surprisingly, some 
strokes (such as first serves and forehand drives) were 
found to be consistently of high energy and a short time 
until next stroke, whilst others (such as lobs) were of lower, 
but more widely varying, energy and longer and widely 
varying time intervals before next stroke. We went on to 
study Markov models of stroke sequences [10] and the 
feasibility of using templates of MFCCs [3, 9] obtained 
from the acoustic signal to classify the “salient sounds” in 
tennis matches. It was found that only the “observable 
state” Markov model (and not HMMs) generated realistic 
length rallies [10], but on a limited dataset, the MFCC 
template matching approach did show encouraging success 
rates for classifying the sound events [9].  
In the present paper, we extend this work by using a more 
comprehensive approach with partitioned datasets than in 
our previous studies, and investigate the feasibility of using 
a “hybrid” classification strategy, combining “prediction 
information” from the Markov model sboth detecting and 
correctly classifying tennis strokes and other “salient 
sounds” automatically, solely on the basis of evidence 
present in the acoustic signal.  
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4 Methodology 

4.1 Acoustic Analysis 

Many of the sound events of interest here are “impulsive” 
and some of the types considered have rather similar power 
and spectrographic profiles. This would make 
distinguishing between them, based on visual inspection of 
spectrograms alone, rather difficult. Two examples of such 
spectrograms are shown in Figure 1 . Further examples can 
be found in [9]. 

           

(a)              (b) 
Figure 1  :  Example Spectrograms for “similar” sound 
events : (a) Forehand drive, (b) Two-handed backhand 
drive. These appear very similar to the human eye.  

In our attempt to classify the “salient sounds” occurring 
during the tennis matches, we have created “spectrographic 
templates”. Following a standard procedure used in speech 
processing, we have used 13 Mel Frequency Cepstral 
Coefficients (MFCCs) [3] – 12 for frequency bands 
covering the range 0 – 15 kHz and one representing the 
power in the audio signal. For each MFCC calculation, we 
use a window of duration 10 ms. We then formed a 
“template” of 20 such MFCC values, calculated over 20 
windows, with any given MFCC window covering a  period 
which overlapped by 5 ms with its predecessor and by 5ms 
with its successor in the template). Each template thus 
encodes sound events occurring within a period lasting 
100ms in total. This value was chosen since it is relatively 
long compared with the duration of “impulsive” sound 
events (such as racket on ball impacts or bounces of the 
ball) occurring during the tennis matches, but short 
compared with the typical intervals (of the order of 1 
second) between such events.  

4.2 Principal Component Analysis 

Our method of “encoding” the sound events in templates of 
MFCC values results in feature vectors of rather large 
dimensionality (20 x 13 = 260 in this case) for each 
example. In order to perform classification of examples into 
the 14 categories of sound events, it is highly desirable to 
work with a smaller number of “most useful” features. 
Principal Components Analysis (PCA) [4] is one method 
for achieving this, by choosing the “best” linear 
combinations of the original features. PCA proceeds by 
computing the eigenvalues and corresponding eigenvectors 
of the covariance matrix of all the examples for each 
category or class in the dataset of interest. In general, for 
data in N dimensions, there will be N eigenvalue-

eigenvector pairs (not necessarily all distinct, but all the 
eigenvalues are non-negative). In PCA, the largest M 
eigenvalues (for M < N) are retained along with their 
corresponding eigenvectors. These will form a basis for a 
“reduced dimensional” space which will be the “most 
useful M dimensions” for identifying data of that category. 
The choice of M can be empirical in order to obtain 
satisfactory classification performance. In application, data 
points (spectrographic templates in this case) in the original 
space are projected onto the reduced (M dimensional) 
eigenspace for each category in turn. The example is put 
into whichever category gives the smallest distance (using 
an appropriate metric) between the original data point and 
its projection. 
Here, each template is regarded as a “feature vector” with  
N = 260 components. Having used the video footage to 
identify the appropriate category (9 different types of tennis 
strokes and 5 “other events” – echo, ball bounce, applause, 
speech or silence) for each “sound event”, the covariance 
matrix over all examples of that type was found. All the 
eigenvalue-eigenvector pairs for each category/matrix were 
then computed and the appropriate reduced eigenbasis for 
each class found by PCA. For various values of M << 260, 
we studied the effects on the successful classification rates 
of retaining only those dimensions in the eigenbasis 
corresponding to the largest M eigenvalues. In application, 
we used a Euclidean distance metric for determining the 
“closest” category (in the feature space) to any given 
example sound event, and that example was then classified 
as belonging to that category. 

4.3 Markov Models 

In our previous studies [8, 10], we found that, to a 
reasonable approximation, the distribution of rallies by 
number of strokes could be modelled by a relatively simple 
probabilistic, Markov type, model. Models where the states 
directly corresponded to actual classes of tennis strokes 
approximated the data from the videos of real matches 
rather better than Hidden Markov Models (HMMs),  where 
the states could generate strokes (without a particular state 
necessarily being in 1-1 correspondence with any given 
type of tennis stroke) [10]. In this present paper, we extend 
this by (a) performing our experiments on partitioned 
datasets, in a “cross-validation” approach [11] and (b) 
looking at the distributions of short rallies (of up to 4 
strokes), where meaningful statistics can be calculated for 
explicit distinct sequences of strokes (e.g. Serve followed 
by Forehand Drive, followed by Backhand Drive followed 
by Two-Handed Backhand Drive), at least for the more 
common such sequences. Using one subset of the available 
data to calculate a “transition matrix” of probabilities of one 
stroke type following another, we then generate “synthetic 
rallies” using this probabilistic model. The distribution of 
the set of sequences so generated are then compared with 
the distributions of the corresponding sequence of strokes 
(if it is present) in the dataset of “real rallies” from the TV 
footage, using a  χ2 “goodness of fit” test (with sequences 
where the simulations gave a number small number of 
occurrences being group together). Some examples of 
“real” rallies found in our dataset are given in table 2. 
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Table 2  Examples of rallies in our dataset. The codes used 
for the tennis strokes are as specified in Table 1. 

4.4 Hybrid Classifiers 

Inspired by the “Acoustic Model & Language Model” 
approach widely used in Automatic Speech Recognition 
[12], we have attempted to improve the success of our 
classifier by combining information from the acoustic 
signal with predictions about which stroke types are likely 
or unlikely to occur, based on the statistical distribution of 
individual strokes in the dataset and/or on statistics relating 
to pairs of successive strokes (from the Markov model), 
using a “Naïve Bayesian” approach [5] to make decisions 
based on more than one source of information.  

5 Results 

5.1 Acoustic Template Matching 

We have performed an N-fold cross-validation [11], after 
partitioning the data N ways and using (N - 1) parts for 
training and 1 part for testing in each case. (This contrasts 
with our previous experiments [9, 10] which were on a 
more limited dataset which was not partitioned.) 
Reasonably consistent results were obtained across the 
different partitions for both N = 2 and for N = 5. (The 
dataset contained too few examples of some strokes, such 
as smashes and lobs, to give meaningful results if larger 
values of N were used.) Serves were generally classified 
correctly as serves (83%), although second serves were 
sometimes mis-classified as first serves, and forehand 
drives were also normally classified correctly (73%). 
However, the other powerful “play” strokes : one- and two-
handed backhand drives, were quite often mis-classified as 
forehand drives (43%). This is not so surprising since these 
strokes are spectrographically rather similar. The results on 
lobs, volleys, smashes and stop shots were also poor, 
although the data available for these was very limited. For 
the other sounds, 70% of echos, 75% of ball bounces, 73% 
of examples of speech and all examples of applause and 
“silence” were correctly classified. Around 15% of echos 
were mis-classified as forehand drives (of which they were 
probably the reflections) and around 13% of bounces of the 
ball were classified as “silence”, probably because the 
signal power was then very low. No more than 10 PCA 
dimensions were retained for any one category in any case. 

5.2 Markov Model “Simulated Rallies” 

We generated a large number of simulated rallies using our 
“observable” Markov model and compared the first N 
strokes of these with the first N strokes of the real rallies in 
our dataset from the TV coverage. Meaningful results were 
only obtainable for N ≤ 4, since the real data was two 

sparse for longer rallies. Scaling the simulated data to give  
an equivalent total number of rallies to the number in the 
real data (i.e. 217 rallies), and grouping together all distinct 
sequences for which the simulated data predicted fewer 
than 5 examples, we performed a χ2 “goodness of fit” test to 
investigate whether our Markov model generated realistic 
proportions of each distinct rally sequence. For the 
“training” portion of the real data., an excellent fit (χ2 =   
0.4263, DF = 5, p = 0.995) was obtained, whilst with the 
“test” portion of the real data (χ2 = 3.0919, DF = 5, p = 
0.686) a satisfactory fit was obtained, suggesting that the 
Markov model  did provide a reasonable explanation of the 
observed rally data. This complements our previous work 
which looked only at the lengths of rallies generated by the 
Markov model in comparison with the real data [10]. 

5.3 Hybrid Classifiers 

We have compared the “successful classification rates” for 
tennis strokes, when applied to previously unseen data (i.e. 
data not used in training), of methods using the acoustic 
templates (with PCA) alone, the statistical distribution of  
individual strokes across the dataset (which can be 
considered equivalent to a “unigram” model in Statistical 
Language Modelling), and the predictions of the Markov 
model alone (equivalent to a “bigram” language model). 
Initially we employed an “Argmax” criterion, so that the 
category with the highest probability was selected. Under 
this approach, the acoustic model was most successful 
(overall 55% classified correctly), and the “unigram” model 
had the second best success rate (48%). However, due to 
the “Argmax” method, only forehand drives (the most 
common type of stroke in the data) were correctly 
identified, highlighting the limitations of this approach ! 
Under these conditions, the Markov (bigram) model gave 
45% successful classifications. We then used a “Naïve 
Bayesian” scheme [5] to combine information from more 
than one source into our classification process. Still using 
the “Argmax” approach, hybrid Acoustic-Unigram, 
Acoustic-Markov, Unigram-Markov and Acoustic-
Unigram-Markov all gave similar success rates to those of 
Unigram or Markov alone (45 to 48%). 
In order to address the issue of “Unigram with Argmax” 
only being able to correctly classify the most common type 
of stroke, we investigated an alternative strategy where, if a 
sound event was given a probability pi of being of class i, pj 
of being of class j, etc., then it would randomly be assigned 
to class i with probability pi, etc. This approach did not 
yield good results for “successful classification rates” when 
applied to the “acoustic plus PCA” method on its own, and 
made little overall difference to the success rates for  
“unigram only” or “Markov only”  classifiers. However, 
successful classification were made across all the different 
stroke types, in contrast to the results for the “Argmax” 
approach.  The successful classification rates for the 
“hybrid” classifiers were also better with this “random” 
approach than using “Argmax”, but, on the data studied to 
date, have never exceeded the success rates obtained using 
the “Acoustic model with PCA” under the Argmax scheme. 
This is currently under further investigation. 

S1,F 
S1,BD2H,FD,F 

S1,FD,FD,BD,VO,W 

S2,BD2H,FD,FD,FD,BD2H,SS,W 

S1,FD,SS,LO,SM,BD2H,BD,FD,FD,BD2H,BD,FD,BD,W 
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6 Conclusions and Further Work 
We have shown that acoustic template matching using 
MFCCs and PCA can lead to reasonably successful 
classification of “salient sound events” in the controlled 
environment of championship tennis matches, and that an 
observable state Markov model can generate realistic rallies 
which provide a “satisfactory fit” (according to χ2 tests) to 
the distribution of specific stroke sequences found in real 
data.  Our basic acoustic classifier has been more successful 
in classifying some types of events than others. We have 
attempted to combine it with “predictions” based on the 
statistical distributions of single strokes (“unigram” model) 
and the Markov model (“bigram” model). To date these 
have had limited success, but we are investigating them 
further, along with statistics on sequences of 3 successive 
strokes (“trigram” models), which have been employed 
very successfully in statistical language modeling [12]. 
We also intend to generalise this work to audio-visual data 
obtained from “club level” tennis matches (aiming to 
incorporate our methods into coaching aids), to other sports 
such as golf, cricket and baseball, and to a wider range of 
situations, such as detecting “salient sounds” in security 
surveillance and in the care of the sick or elderly. Such 
environments are less controlled and predictable than 
championship tennis matches, with greater challenges. 
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