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The amount of information about a source that can be recovered from sound is naturally limited by
the ear’s ability to resolve individual modal frequencies unique to that source. To measure these limits,
listeners were asked to detect, in a standard two-interval, forced-choice task with feedback, which of two
sounds on each trial contained a missing partial. The frequencies of the partials corresponded to the
ideal modes of a simply-supported, rectangular plate. Plate surface areas and height-wide ratios were
chosen to produce the same bandwidths (125-1125, 250-2250 or 500-4500 Hz) for different numbers of
partials (11, 16 or 24). Overall level of the sounds was roved to discourage detection based on simple
level differences. Detection of five highly-practiced listeners was largely independent of the frequency of
the lowest partial, being best for partials 1-3, 1-4 or 1-6 for 11, 16 or 24 partials in total, respectively.
Mutual masking among the higher-number partials is given as the likely cause. The results are discussed
in terms of their implications for the identification of rudimentary source attributes from sound. [Work
supported by NIDCD grant 5 R01 DC006875.

1 Introduction

Listeners have been shown to be capable of distinguish-
ing the size and shape of a plate from the sound it pro-
duces upon impact [4][5]. However, the acoustical prop-
erties of the plate sound listeners use as basis to make
such judgements are unclear. The sound emitted by a
struck plate is effectively a sum of decaying partials, cor-
responding to the resonating modes of the plate. If this
sound cannot be descriminated from the same sound
with one partial missing, then that partial seems un-
likely to convey unique information about the plate ge-
ometry to the listener. In the current study we test
listener sensitivity to such missing partials, and thereby
identify which partials are likely to convey unique in-
formation regarding the attributes of the plate. This in
turn will allow us to evaluate what acoustic information
associated with these partials might be available to the
listener to judge plate attributes.

One obvious factor expected to influence detection
of a missing partial is mutual masking among partials;
however, the results from several studies suggest that
this may not be the only factor. Moore and Ohgushi [6]
studied whether listeners can ”hear out” individual par-
tials of a tone complex. To equate for mutual mask-
ing, they used tone complexes that consist of partials
spaced evenly on an ERB scale. In their study, the probe
and the tone complex were presented in sequence. The
probe was close in frequency to one of the partials in
the complex, but was mistuned slightly downward on
half the trials (at random) and mistuned slightly up-
ward on the other half. The task of the subject was to
indicate whether the probe was higher or lower in fre-
quency than the nearest partial in the complex. They
showed that even for tone complexes that consist of par-
tials spaced evenly on an ERB scale, discremination per-
formance was better for the lower frequency partials. In
a review of the literature, Plomp [7] suggests that the
even harmonics are easier to hear out than the odd har-
monics of a harmonic tone complex. These observations
are inconsistent with the idea that components are re-
solved unless they are masked.

The previously mentioned studies focussed on the
ability of listeners to ”hear out” certain partials in a
complex. This is somewhat different from our study
where we test if listeners can detect whether a given
partial is missing. Our method leaves open the pos-
sibility that detection could be mediated by a timbral
difference between two sounds. In this respect, a study

by Ellermeier [3] uses a methodology that is more like
ours. The stimuli used were multitone complexes con-
sisting of 3, 5, 7, 11, or 15 sinusoidal components equally
spaced on log frequency, all occupying the same range
between 200 and 3200 Hz. Thresholds were measured
for an increase or decrease of the amplitude of the 800
Hz central component. For the closest spacing of compo-
nents, the two frequencies nearest to the 800-Hz central
component fell well outside the critical band. Overall
level was roved to prevent detection based on simple
level difference. The resulting threshold ranged from a
difference of about 3 to 6 dB, depending on the sign of
the change and the number of components. There was
a slight trend for thresholds to improve as the frequency
ratio between the adjacent components was increased.
More important, however, detection of increment was
generally better thatn detection of decrement; and ob-
servation that cannot be explained by mutual masking
alone.

2 Methods

2.1 Stimuli

The frequencies of the partials corresponded to the ideal
modes of a simply-supported, rectangular thin plate, as
given by Rossing and Fletcher [8],

fmn = 0.453cLh

[

(

m + 1

Lx

)2
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where m and n are non-negative integers denoting the
number of nodal lines in the vertical, x, and horizon-
tal, y, direction of the plate, cL is the longitudinal wave
velocity, h is the plate thickness and Lx and Ly are
the lenght and width of the plate. Plate surface areas
and height-wide ratios were chosen to produce the same
bandwidths (125-1125, 250-2250 or 500-4500 Hz) for dif-
ferent numbers of partials (11, 16 or 24). Overall level
of the sounds was roved to discourage detection based
on simple level differences.

The sounds, s(t) were made to decay in amplitude
over time by multiplying the sinusoids of the partials
with a frequency-dependent exponential:

s(t) = ΣN
n=1 sin(2πfnt)e−1/τ(fn)t,

with fn the modal frequency and τ(fn) the correspond-
ing decay for that mode. This corresponding decay is
calculated so that fn × τ(fn) = 200. This envelope was
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chosen rather than the more conventional square en-
velope because it bears more resemblance to naturally
resonating objects. The sounds were one second in du-
ration, and they were gated on and off with a 4 ms raised
cosine ramp. The sample rate was 48 kHz.

2.2 Procedure

The sounds were presented to the listeners via head-
phones (Beyerdynamic DT 990), that were connected
via a headphone amplifier (Rolls RA62) to the sound-
card of the PC (midiman Delta-1010). The listeners
were seated in a double-walled, sound-attenuation cham-
ber. Listeners were asked to detect, in a cued two-
interval, forced-choice task with feedback, which of two
sounds on each trial contained a missing partial. The
actual partials that was missing was selected at random
on each trial within a block of trials. Note that in real
terms, one or more partials may not be not excited if
the plate is hit at a point where the particular mode or
modi have a nodal line. This way we have created two
valid plate sounds, that is, they could both be generated
by the same, real, plate.

3 Results

Figure 1 shows the listeners sensitivity to missing one of
the partials of a tone complex. The data from our ex-
periment is shown alongside the results from the simula-
tions. Various pannels show the resulst for the three dif-
ferent numbers of partials and the three different F0’s.
From this figure we can see that the detection of miss-
ing partials for the five highly-practiced listeners was
largely independent of the frequency of the lowest par-
tial, being best for partials 1-3, 1-4 or 1-6 for 11, 16 or
24 partials in total, respectively. The effect of changing
F0 is relatively minor. To predict the effect of mutual
masking of partials, we undertook a simulation using the
AIM model of [1]. In the AIM model, an auditory filter-
bank is used, followed by a bank of haircell simulators
is used to abttain the Neural Activity Pattern (NAP)
that the sound would produce at the level of the audi-
tory nerve or cochlear nucleus. The difference in NAP
was taken for the sound with and without a missing
partial. This difference was then converted to a value
of d’ according to the excitation pattern model of Buus
and Florentine [2]. The results of the simulations us-
ing the AIM model predict reasonably well the number
of the lowest components that are best detected when
missing. Therefore, mutual masking among the higher-
number partials seems the likely cause for the reduced
sensitivity to their absence.

3.1 Discussion

The results of the present experiment indicate that par-
tials above model number 5-6 are rarely detected when
missing and so are unlikely to have a significant im-
pact on listener judgment regarding physical attributes
of plates. To evaluate the acoustic information available
in the lower-frequency partials we will refer to Figure 2.

We first explain the origin of the different lines and
reasons why they curve in different ways. Analyzing
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Figure 2: Modal frequencies as a function of plate
dimensions. Due to changing geometries of a simply
supported plate the frequencies of the modes varies.

On the ordinate we find the normalized modal
frequencies, on the abscissa the height-wide ratio of the

plate. On the left is a square plate, that becomes
narrower and longer when reading left to right. The

geometry of the plate changes going from left to right
on the horizontal axis. Lx and Ly denote the length
and width of the plate, thus, the left, the plate is

rectangular plate wheras it is long and narrow on the
right. By counting the number of modes between 1
and 9 times F0, we can see that the square plate on
the left has a less dense spectrum than the long and

narrow one on the right.

the lowest harmonics higher than F0, we see the modal
frequencies fm,n=2,1 and fm,n=1,2 move in opposite di-
rections. Note that the values for (m, n) cannot be read
from the figure but need to be calculated from Equa-
tion 1. The first harmonic becomes lower when the
plate becomes narrower. The other, fm,n=1,2, rises and
is equal to fm,n=3,1 for Lx/Ly = 1.35/0.83. Therefore,
fm,n=1,2 is the second harmonic for 1/1 < Lx/Ly <
1.35/0.83 but it is the third harmonic for 1.35/0.83 <
Lx/Ly < 3.5/0.77. Two modes that have the same oscil-
lation frequency are said to be degenerate. Degenerate
modes shift a little in frequency, but this effect is not
included in our figure. The three horizontal lines repre-
sent modes m, n = 1, 1 (which is F0) , m, n = 2, 2 and
m, n = 3, 3.

As can be seen from Equation 1, the geometry also
has an influence on the fundamental frequency, F0. The
fundamental frequency is one of the most basic potential
cues for the plate size. Bigger plates have a lower F0.
The fundamental frequency (F0) can be controlled via
the term in front of the equation, cLh in a simple lin-
ear way. We chose, therefore, to normalize the plot by
changing Lx and Ly so that the fundamental frequency
is constant. This leaves us in a better position to study
the effects of the geometry on the other, higher, modes.
As a result, however, both Lx and Ly vary along the
abscissa. There is no geometrical constant, such as the
plate surface, along the abscissa.

As was mentioned, the first harmonic (F1) mono-
tonically decreases when the plate becomes longer and

Acoustics 08 Paris

5285



1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

11 partials − lowest is 125Hz

model

data

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

16 partials − lowest is 125Hz

model

data

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

24 partials − lowest is 125Hz

model

data

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

11 partials − lowest is 250Hz

model

data

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

16 partials − lowest is 250Hz

model

data

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

24 partials − lowest is 250Hz

model

data

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

11 partials − lowest is 500Hz

model

data

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

16 partials − lowest is 500Hz

model

data

1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

7

normalized frequency of the missing partial (F/F0)

d
 p

ri
m

e

24 partials − lowest is 500Hz

model

data

Figure 1: The nine panels show the sensitivity to missing partials of a plate sound, for three different fundamental
frequencies and three different number of partials. On the abscissa is the normalized frequency of the missing partial,

and the ordinate shows d’, a measure of sensitivity. The experimental results are indicated with crosses, the lines
result from simulation.
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narrower. The frequency of F1 can, therefore, serve as a
cue for the plate geometry. Although listeners are typ-
ically very poor in absolute frequency determination,
they are much better in judging frequency ratios [10].
For the rest of the modes, such simple relations do not
exist. For the third harmonic m, n = 1, 2 for more
square like plates while for more rectangular plates with
Lx/Ly > 1.35/0.83, the mode with m, n = 3, 1 is the
third harmonic. This results in the third harmonic first
increasing and then decreasing in frequency when the
plate dimension goes from square to long and narrow.

Our results indicate that the higher harmonics are
not heard out individually very well. They could, how-
ever, still provide information to the listener. In earlier
work we showed that listeners are capable of estimat-
ing the spectral density of a sound, that is, they could
distinguish the number of components in a given band-
width [9]. For spectral-density discrimination, we de-
rived a weber fraction of 0.3. We can estimate the mini-
mal difference of the plate height wide ratio that results
in an audible difference in density of the sound. Con-
sidering the band from F0 to 9F0, we see that there
are 10 partials for a plate with Lx/Ly = 1.05/0.95 a
plate would have at least 13 partials which is the case
for plates with Lx/Ly > 1.45/0.8

Our results show that the listeners can reliably de-
tect a missing first harmonic. We argued that this first
harmonic provides the listener with information about
the plate geometry. Viemeister and Fantini [10] tested
two subjects for their threshold in frequency ratio dis-
crimination. The subjects had to judge the larger inter-
val out of two intervals, both having a different average
frequency. They tested frequencies of 400 to 600 Hz.
The reference frequency ratio r was 1.25. Two sub-
jects had thresholds δr/r 1.65 and 0.83 %. A plate
with F1/F0 = 1.25 has Lx/Ly = 2.45/0.74 and if we
add 2 percent, we find a discriminable plate geometry
of Lx/Ly = 2.34/0.74. Therefore, this potential cue
has the potential of resulting in very precise geometry
judgements.

While the present results suggest that such cues are
audible to listeners, future work needs to determine whether
this information is indeed used by listeners in the judg-
ment of plate attributes.
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Caussé, The representation of auditory source char-

acteristics: Simple geometric form, Perception &
Psychophysics 59 (1997), no. 8, 1180–1190.

[6] Brian C.J. Moore and Kengo Ohgushi, Audibility

of partials in inharmonic complex tones, J. Acoust.
Soc. Am. 93 (1993), no. 1, 452–461.

[7] R. Plomp, The ear as a frequency analyzer, J.
Acoust. Soc. Am. 36 (1964), no. 9, 1628–1635.

[8] Thomas D. Rossing and Neville H. Fletcher, Prin-

ciples of vibration and sound, Springer, 1995.

[9] Christophe N.J. Stoelinga and Robert A. Lutfi,
Spectral density discrimination, ARO Midwinter
Meeting, 2008.

[10] Neal F. Viemeister and Deborah A. Fantini, Audi-

tory processing of complex sounds, ch. 5: Discrim-
ination of Frequency Ratios, pp. 47–56, Lawrence
Erlbaum Associates, 1987.

Acoustics 08 Paris

5287


