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aIGIC - Universitat Politècnica de València, Cra. Nazaret-Oliva S/N, E-46730 Gandia, Spain
bDepartament de Fisica i Enginyeria Nuclear, Colom 11, 08222 Terrassa (Barcelona), Spain

iparjona@upvnet.upv.es

Acoustics 08 Paris

3673



We report the nondiffractive propagation of ultrasonic waves in sonic crystals, e.g., acoustic media with periodic 
modulation of the material parameters. Such materials have recently attracted a great interest, because of their 
potential applications in the control of sound propagation, used as reflectors, focusers or waveguides. All these 
properties are related with the dispersion introduced by the crystal anisotropy. In particular we consider the case of 
two-dimensional sonic crystals, consisting, e.g. in an array of steel cylinders in water. It is shown that, for given 
frequencies and directions of incidence, a narrow sonic beam can propagate without diffractive broadening. Such 
nondiffractive sonic beams exist in crystals with perfect symmetry, and do not require the presence of defects, 
differently from other waveguiding phenomena reported previously. The cancellation of diffraction occurs at 
frequencies and wavevectors for which dispersion curves (isofrequency lines) have zero curvature, i.e, are locally 
flat. By means of perturbative techniques, a simple analytical expression for the nondiffractive conditions has been 
obtained. The phenomenon is also demonstrated by numerical integration of the acoustic equations using the 
FDTD technique. We present experimental evidence of the nondiffractive propagation in a periodic array of steel 
cylinders in water. 

1 Introduction 

Sound crystals (SCs) are periodical structures of 
scatterers in a homogeneous medium, i.e. are media 
with periodical modulation of their acoustical 
properties. The study of SCs was stimulated by the 
previous results in other field like optics [1], that 
permitted to use the photonic crystals for designing 
materials with band gaps for the light propagation and 
to construct photonic crystal waveguides, and early 
similar results were obtained in the field of acoustics 
[2]. 
One of the most studied properties of the SCs is the 
existence of prohibited propagation acoustical 
frequency bands. These bands correspond to 
frequencies for which the acoustic wave does not 
propagate inside the crystal but it is reflected. 
Therefore the SCs are good candidates to manipulate 
band gaps and create waveguides and isolators.  
Most of the studies about SCs are devoted to the case 
of one dimension structures, what permits some 
analytical treatment, in opposition to the 
multidimensional cases which properties are 
numerically investigated either through the plane 
wave decomposition or finite difference methods. Also 
the major part of them concern only about the 
temporal dispersion properties introduced by the 
crystal. We have focused our studies in the 
bidimensional case and demonstrated in a recent 
work [3] that the crystal modifies the spatial dispersion 
relation ( )⊥= kkz ,ωω  with ( )yx kkk ,=⊥ . The 
group velocity of each component is determined by 
the gradient of the frequency in k-space, 

( )kv kg ω∇= . As a consequence, for a given 
frequency the power propagates along the 
perpendicular direction of the spatial dispersion 
relation or equifrequency surfaces ( )⊥= kfk z . 
During a finite distance l the phase accumulated by 
any component is ( )lkk z ⊥=φ . In geometrical terms, 
the spatial dispersion relation presents in general 
some curvature, resulting in a diffractive broadening of 
the beam. As out in [3], a notable exception can be 
found in the case of sonic crystals, where the 
isofrequency curves in 2D) develop flat segments at a 
particular frequency for a given geometry of the 
crystal. In this case, waves with wavevectors lying on 

the flat segment do not dephase during propagation 
through the crystal, and the beam propagates without 
apparent diffraction keeping its original size. This 
fascinating effect, originally named self--collimation, 
has been also experimentally demonstrated to the 
date for different frequency ranges of electromagnetic 
waves, in particular in the optical [4], and microwave 
[5] regimes. We will show in this work the 
experimental demonstration for the acoustical case. 

2 Theory and numerical simulation 

The acoustical propagation is governed by the set of 
equations 
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where ρ(r) and B(r) are the medium density and bulk 
modulus (space dependent), p(r,t) is the scalar 
pressure and v(r,t) is the vector velocity. Assuming an 
harmonic dependence for the fields, the equation for a 
wave of given ω frequency is given by the eigenvalues 
equation 
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where the upper bar means that the quantity is 
normalised to that of the homogenous host medium. 
Being the lattice vectors 

{ }Nn,na;n+an=R=R 221 ∈1 , with a the 
scatterers distance and the reciprocal lattice vectors 

{ }Nnπn;=RG:G=G ∈⋅ 2 , and developing the 
variables in that last vector base, 

∑ −−
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G eρ=(r)ρ Gr11 , ∑ −−
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G
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Gk,

ikr epe=p(r) Gr (Bloch-Floquet theorem) we 

obtain the eigenvalues equation 
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To solve this equation permits to know the crystal 
band structure, and therefore the possible existence 
of forbidden bandgaps together with the isofrequency 
contours that will allow noticing the nondiffractive 
zones existence. 

           
Figure 1.- Isofrequency lines, evaluated for a=5.25 
mm and r=0.8 mm, forthe first (a) and second (b) 
bands, centered at Γ point, ascalculated by the plane 
wave expansion method. Numerals denote the 
reduced frequency hca πω 2/=Ω . 

By solving the eigenvalue problem one obtains the 
frequencies corresponding to each Bloch wave 
characterised by k (the two-dimensional Bloch vector 
restricted to the first Brillouin zone), resulting in the 
dispersion relation of the periodic medium. In Fig. 1 
the equifrequency contours are plotted for the first 
[Fig.1(a)] and second [Fig. 1(b)] propagation bands, 
for the parameters corresponding to our experimental 
setup. The analysis of the families of equifrequency 
curves shows that there always exists a particular 
frequency corresponding to a flat segment, in each 
propagation band. The corresponding direction of the 
nondiffractively propagating waves in k-space 
depends on the number of the propagation band: e.g. 
is at 45˚ with respect to the crystal axes, i.e. in the < 
1,1> direction, for the first band, or along the crystal 
axes, i.e. in the <1,0> and <0,1> directions, for the 
second band. The nondiffractive frequencies are 
slightly less than the central frequencies of the 
corresponding band gap (denoted by the points M and 
Γ in Figs. 1(a) and (b), respectively), by an amount 
depending on the filling factor. The asymptotic 
analysis in the limit of small filling factor, discussed in 
detail in [3], leads to the relation ( )32gnd f= /1−ωω  

where ωnd is the frequency for a nondiffractive beam, 
and ωg is the angular frequency corresponding to the 
bandgap.  
The predictions of the previous analysis have been 
confirmed by the numerical simulation of Eq. (1) using 
the Finite Difference Time Domain (FDTD) technique, 
where an input beam with the above calculated 
nondiffractive frequency in the second band was 
propagated through the crystal. A typical result, 
obtained for medium parameters corresponding to our 
experimental setup and a source frequency of f=230 
KHz, close to the nondiffractive propagation 
frequency, is shown in Fig.2, where the effect of self-
collimation is convincing. 

                
Figure 2.- . Sound beam propagation through a sonic 
crystal under subdiffractive conditions 

3 Experimental demonstration 

The first experimental evidence of ultrasound self--
collimation has been obtained by measuring the two-
dimensional pressure distribution across the 
transverse plane of the beam in three situations, as 
shown in Fig. 3: in case (a) close to the source (z=5 
mm), in case (b) at z=10 cm from the source in the 
absence of crystal, and in case (c) at the exit plane of 
the crystal, located at the same distance from the 
source as in case (b). The transverse plane was 
scanned in steps of 1 mm, and the resulting 
distribution was later interpolated in order to get the 
smooth distributions shown in Fig. 3. Figure 3(b) 
illustrates the expected diffractive broadening after 
propagation in a homogeneous medium. In this case 
the width of the beam is roughly determined by the 
number of Rayleigh lengths, lR =R²/2ch the beam has 
propagated in the medium. For the considered case, 
lR=7 cm. Since the beam width increases in a factor 2 
every Rayleigh length, at l=10 cm the beam size is 
three times larger than the input beam, in agreement 
with the measurements (see also Fig. 4). In the 
presence of crystal, the beam evolved into a strongly 
elliptic one after the propagation through the periodic 
medium [Fig. 3(c)]. In this case, the beam was 
strongly diffracted in the vertical direction, along the 
direction of the steel cylinders, since in this direction 
any spatial modulation is absent. The diffraction in the 
horizontal direction, where the modulation was 
present, was strongly suppressed, and the final width 
of the beam remains nearly the same as at the 
entrance. 

       
Figure 3.- Transverse distribution of the beam 
measured at the entrance (a) and at a distance z=10 
cm without (b) and with (c) the crystal. 
 
A better comparison can be can be obtained by 
inspecting the 1D transverse cross-section of the 
beam distribution, at the exit plane, with and without 
crystal. Figure 4(a) shows the measured beam cross-
section at x=0 and z=10 cm from the source, both with 
(continuous line) and without (dashed line) the sonic 
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crystal. For comparison, we also show in Fig.4 (b) 
numerical results corresponding to the FDTD 
simulation of Eq. (2). Vertical axis corresponds, in 
both cases, to the pressure amplitude normalized to 
the maximum pressure in the case of free 
propagation. Note the energy redistribution, the 
decrease in size associated to self-collimation effect is 
accompanied by an increase in the maximum 
transmitted amplitude. 

        
Figure 4.- Cross section of the beam at the exit plane 
of the crystal (continuous line), and at the same 
distance from the source without crystal (dashed line), 
as measured (a) and numerically evaluated (b). 
Parameters are the same as in Fig. 3. 
The beam width has been evaluated at the exit plane 
as the corresponding to one half of the maximum 
pressure value, see Fig.5. The resulting width has 
been normalized to the width of the beam after 
propagating the same distance from the source 
without crystal. In this way, we explored the 
dependence of the beam width on the frequency in 
order to locate the optimum frequency for the self-
collimation. The results are summarized in Fig. 6. The 
undesired effects of the frequency-dependent initial 
width, and the inhomogeneities in the initial 
distribution due to the excitation of different modes in 
the transducer, can be neglected. The experimental 
results are represented in Fig. 6 by symbols. It is 
clearly appreciated that the beam width presents a 
well defined minimum for 225 KHz. At this value, the 
width and the entrance and exit plane remains nearly 
the same (see also Fig. 4), evidencing the 
disappearance of diffraction. We note that the 
existence of a minimum is very significant, as it 
evidences the effect of self-collimation, and not that 
the sound propagates at the "geometrically 
transparent" directions of the crystal. In such a case, 
the effect would hold equally for all frequencies. 

       
Figure 5.- Cross section of the beam at z=10 cm 
without crystal (blue line) and at the same distance, 
which corresponds with the crystal exit (red line) for 
different frequency values. The frequency value 
diminishes from the gap (260 kHz).  
The frequency for which the beam presents the 
minimum width, however does not exactly coincide 
with the calculated zero-diffraction frequency (230 
KHz), being slightly less. We interpret this discrepancy 
as a finite propagation distance effect. The spatial 
dispersion curve is never flat on a finite segment -- the 
curvature can become zero just on one or several 
points. Therefore the beam, even at the zero-
diffraction point, weakly broadens in the propagation. 
In Fig.6 the width of the beam after the crystal is given 
depending on the frequency, as measured 
experimentally (solid circles) and as evaluated 
analytically (lines). The analytic curve has been 
derived following and expanding the perturbative 
methods in [3] for the dispersion relation κ7(κ^). 

 
Figure 6.- Width depending on frequency. 
Experimental results at the crystal exit (circles) and 
comparison with theory (line). 
from the text by a 12 pt spacing.  

4 Conclusions 

In conclusion, the subdiffractive propagation of 
acoustic waves in a sonic crystal has been 
demonstrated experimentally for the first time. Such 
novel materials have recently attracted a great interest 
[6], because of their potential applications in the 
control of sound propagation, used as reflectors, 
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focusers [7] or waveguides [8]. In particular we have 
considered the case of two-dimensional sonic 
crystals, but the phenomenon should be extendable 
also to the 3D case. It has been shown that, for given 
frequencies and directions of incidence, a narrow 
sonic beam can propagate with very small diffractive 
broadening. Such subdiffractive sonic beams exist in 
crystals with perfect symmetry, and do not require the 
presence of defects, differently from other 
waveguiding phenomena reported previously [8]. The 
cancellation of diffraction has been predicted using 
the plane-wave expansion method to evaluate the 
dispersion surfaces of the crystal and the spatial 
dispersion (isofrequency) curves. It occurs for 
frequencies and wavevectors for which dispersion 
curves have nearly zero curvature. Experimental 
evidence of the considered effect has been presented 
for a periodic array of steel cylinders in water with 
squared symmetry. 
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