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Most multibeam echosounders used in seafloor mapping perform the interferometry method for
bathymetry measurement, based on the zero-crossing of the phase difference between two sub-arrays.
In this approach, only one sounding is computed per formed beam, and the spatial resolution is linked
to the beam footprint extent. Using the whole content of the phase-difference signal vs. time makes it
possible to ideally get a bathymetry data sampled at the very resolution of the digitized signal. However,
this approach compels the phase difference to be unambiguous. Indeed, when the phase difference is
determined through the argument operator, the resulting value is truncated within a 2pi-length interval.
To tackle this hitch, this paper presents and compares techniques to remove the phase ambiguity based
upon interferometry, cross correlation and high-resolution methods. Figures are illustrated by results
obtained on a shipwreck, enhancing the difficulties of each removal technique.

1 Introduction

Many underwater applications such as pipeline track-
ing or seafloor cartography demand for high-resolution
bathymetry at the lowest possible surveying cost. To
this end, multibeam echosounders have taken an impor-
tant role due to their potentiality of measuring a large
quantity of bathymetric soundings per ping from a sin-
gle emitted signal with full-swath coverage. In order to
profit from this amount of available information, several
direction-finding techniques can be then regarded such
as an amplitude-based detection, a phase-based detec-
tion (interferometry) [1] or a complex detection (high
resolution methods) [2]. In this paper, we focus our
attention on interferometry due to its quick, accurate
water-depth measurement compared to the other two
techniques [3].

1.1 Interferometric principle

In order to triangulate an echo, interferometry estimates
its spatial coordinates from the phase delay produced
when the backscattered wavefront reaches two close re-
ceivers at different instants of time. This phase delay
is estimated from the phase difference Δϕ between the
signals s1 and s2 received by each interferometric an-
tenna.

Δϕ = arg{s1s
∗

2} (1)

with s∗2 denoting the complex conjugate signal s2. Un-
fortunately, the resulting phase value after evaluation of
the argument operator is truncated within the interval
]− π,+π]. Consequently, a counter of phase rotationsm
is introduced to compensate for this truncation. Thus,
the phase difference can be geometrically related to the
optical propagation-path delay δR from Fig. 1:

Δϕ+ 2πm =
2π

λ
δR =

2πB

λ
sin(θs − θ) (2)

where B stands for the spacing between the two re-
ceivers, commonly called baseline, λ the acoustic wave-
length, θ the wavefront direction of arrival (doa) of tar-
get, θs the beam pointing angle (complementary to ψ),
and m ∈ Z. The ambiguity of the estimated phase dif-
ference produces some phase discontinuities as shown
in Fig. 2. It is important to note that Eq. (2) is valid
only under a non-dispersive medium hypothesis in which
both phase and group velocities of the wave are linearly
linked.
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Figure 1: Multibeam interferometry geometry.

1.2 High-potential spatial resolution

The bathymetry consists in estimating the slant range,
or time of arrival (toa), and the direction of arrival
(doa) of seafloor echoes on the multibeam array. Then,
the across-track distance and water depth composing
the sounding coordinates can be determined by trigonom-
etry. The bathymetric principle of interferometry is
stated in Eq. (2) with the apparition of three terms: the
ambiguous phase difference Δϕ, the 2π rotation counter
m, and an absolute delay, corresponding to the sine.
Notice in the last term that when a target reaches the
echosounder with a direction equal to the beam point-
ing angle, i.e. θ = θs, the sine term cancels out, re-
sulting in a null phase difference. Consequently, many
current interferometry-based methods aims at detect-
ing the zero-phase difference instant, pointed in Fig. 2,
defining the slant range of the target. Nonetheless, this
procedure, providing a unique sounding per beam, rep-
resents a waste of potential information. Indeed, the
phase ramps are composed of many useful phase sam-
ples, the total number being dependant on parameters
such as the beam angle, sample rate, seafloor profile or
snr. Thus, as introduced in [1], it is certainly possible
to take into account an important number of soundings
per beam and still fulfill current survey accuracy stan-
dards such as the International Hydrographic Organiza-
tion standards [3].

However, in order to retrieve the absolute delay, which
leads to the doa estimation, it is necessary to estimate
the number of rotations m. This paper is devoted to
this task, and proposes four possible solutions: the un-
wrapping algorithm, the cross-correlation function, the
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Figure 2: Raw (dotted line) and filtered (in solid line)
phase differences between two close receivers, 16.25λ

apart, on a flat sea bottom, 110m depth.

music algorithm or the Vernier method.
Finally, see in Fig. 2 that only some phase sam-

ples contains bathymetric information; notice the clear
phase ramps around 210-meter range and the random
behavior of the rest. So, multibeam interferometry re-
quires techniques to select the useful phase samples for
every beamforming. The present paper does not deal
with this topic, but information can be found in [1]. We
will assume throughout this paper that the interval of
useful phase samples has been bounded, and the issue is
to remove the 2π-phase ambiguity. Thus, the following
section describes techniques to deal with this problem,
presenting their assets and drawbacks. The final part is
devoted to the comparison between methods, and pro-
poses a quickest combination of removal techniques. The
illustrative examples were obtained from data sets col-
lected with a 300-kHz EM3002 multibeam echosounder.

2 Phase ambiguity removal

When one aims at considering several phase samples per
beam, it is absolutely necessary to determine the num-
ber of phase rotations m introduced in Eq. (2). Even
in the case of a unique phase ramp, phase discontinu-
ities may come up due to an increase of noise or simply,
a relief discontinuity or the detection of different echoes
within a beam. Therefore, the following subsections pro-
pose different solutions to estimate m.

2.1 Unwrapping technique

The unwrapping technique [4] is the most common re-
moval procedure due to its quick application. When the
interferometric signal phase is assumed to be continu-
ous between consecutive samples, the intuitive way to
remove the phase ambiguity is to detect phase jumps.
Thus, a phase jump is identified by the presence of an
abrupt discontinuity amplitude close to 2π. One so-
lution to detect high transitions between two adjacent
samples is to use a differential operator. When the ab-
solute value of a transition reaches a given threshold
(generally π [4]), the algorithm recognizes the discon-
tinuity and increases the rotation counter. This proce-
dure is extremely simple and only requires a threshold
detection and a ±2π addition. Therefore, the resulting
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Figure 3: Evidence of the potential error propagation
affecting a wrong unwrapping process.

algorithm has a low computation time cost, very attrac-
tive for quick removals.

Nonetheless, two important drawbacks limit the per-
formance of the unwrapping procedure. The first one
concerns the error propagation throughout the sonar
swath as shown in Fig. 3. When an unwrapping er-
ror occurs, any successive sample will be wrongly un-
wrapped, too. The illustrative example in Fig. 3 corre-
sponds to a set of short discontinuities that the unwrap-
ping procedure does not achieve to compensate for. The
resulting phase difference is then a complete disorder.

The second drawback concerns the relative reference
of the resulting unwrapped phase. Indeed, the unwrap-
ping process is carried out from an arbitrary starting
point, so the resulting unwrapped phase is 2π vertically
shifted depending on this starting point, even if the fi-
nal shape is the same. The appropriate vertical shift
is crucial to find the correct doa estimation. There-
fore, without an absolute reference, it is impossible to
correctly estimate the slant range and the arrival angle.

In conclusion, the unwrapping technique can be used
to remove the phase ambiguity when the continuity be-
tween contiguous phase samples, i.e. the absence of
short phase discontinuities, is guaranteed. Then, an ad-
ditional algorithm is required to provide the absolute
reference.

2.2 Cross-correlation function

Interferometry is based upon the arrival-time delay be-
tween two sensors. Since these two sensors receive roughly
the same signal, a way to estimate the time delay is to
compare the received signals, checking the instant when
they are the most similar. The cross correlation R(k)
between signals provides this instant, and is computed
in its discrete form as

Rs1s2
(k) =

1

2L+ 1

L∑

n=−L

s1(n)s∗2(n− k) (3)

where L is the length of a sliding window around the
sample k under consideration. The amplitude of this
function increases with the similarity between the sig-
nals s1 and s2, reaching its maximum value at k0 as
shown in Fig. 4.
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Figure 4: Normalized signal cross-correlation Rs1s2
(k)

between two received signals using a dft approach.

A quick way to compute Eq. (3) is to work in the
frequency domain and determine the cross-correlation
function from the conjugate product of their Discrete
Fourier transforms (dft). The result is a correlation
spectrum such as Fig. 4 where the peak defines the time
delay between receivers. Then, this time delay must be
transformed into a phase delay in order to estimate the
phase rotation counter.

The performance of the cross correlation is limited
by two parameters: the maximum detectable delay, cor-
responding to the wavelength, and the maximum signal
delay, defined by the baseline length. Furthermore, the
computation of Eq. (3) entails some drawbacks. Thus,
the use of a 2L-length sliding window increases the mea-
surement accuracy, but to the detriment of resolution.
Moreover, the cross-correlation computation for each
sample of the phase difference entails a significant time
cost. Nonetheless, the main drawback of this technique
concerns the sensor specifications: in order to properly
perform the cross correlation function, it is necessary
to use sensors with a relative wide bandwidth (Δf/f).
As the dft of a wideband signal is closer to a Dirac
form than the dft of a narrowband signal, the correla-
tion peak is easier to detect from a close-to-Dirac signal
than otherwise. Unfortunately, the use of relative wide
bandwidths involves rather expensive sensors.

2.3 MUSIC algorithm

The music algorithm [5] is a high-resolution method
[6] that aims at estimating the doa of a backscattering
signal at a given instant of sampling time. The detection
principle is based on the decomposition of the covariance
matrix of the observed sensor outputs into eigenvectors
associated to either noise or signal subspace.

Let us denote A(θ) as a steering vector:

A(θ) =
[
a(θ1) , · · · , a(θp)

]
(4)

a(θk) = [ejψ1,k ejψ2,k · · · ej(M−1)ψM,k ]T (5)

with ψi,k(f) denoting the phase of the arrival signal k at
i-th sensor, M the number of sensors, and p the number
of signal sources to be detected. Then, due to the or-
thogonality between the noise and signal subspaces [5],
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Figure 5: Phase ambiguity removal procedure using
music algorithm (beamforming at 51.5◦).

the scalar product between the eigenvectors associated
with the noise subspace, vn, and a given steering vector
a(θ) will give null values for those angles θk correspond-
ing to the arrival signal:

a∗(θk)vn = 0 (6)

Eq. (6) provides a power pseudo-spectrum from which
the DOAs are estimated either by locating its null values
or, alternatively, by searching the maxima of the inverse
spectrum. Thus, the music localization function gmsc(θ)
is written as

gmsc(θ) =
1

∑M

k=p+1 |v
∗

ka(θ)|
2

(7)

Although the computation of the music inverse pseudo-
spectrum entails an important time-cost [3], it can be
occasionally performed in order to provide the abso-
lute reference required by the unwrapping technique.
Thus, the proposed music-based removal procedure be-
gins with unwrapping the phase difference from an arbi-
trary starting point. Here, we assume that the analyzed
phase difference is continuous and that no abrupt phase
discontinuity is present in the analyzed interval [1]. This
condition guarantees a good phase unwrapping. Then,
an instant of sampling time k is selected to apply music.
Here, we propose to consider the sample with the high-
est snr and the lowest variance, thus entailing trustful
performance. The doa estimation provided by music,
θmusic, is then transformed into a phase-difference value
from Eq. (2), and the number of phase rotations,mmusic,
is estimated as follows:

mmusic(k) =
B

λ
sin(θs − θmusic(k)) −

Δϕ(k)

2π
(8)

where θs stands for the beam pointing angle. A sketch
of this procedure is shown in Fig. 5 where the sharp
peak of the music pseudo-spectrum makes the phase
ambiguity removal easier.

The main advantage of a music-based removal con-
cerns the highly-reliable absolute reference, required to
unbias the unwrapped phase difference. On the other
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Figure 6: Vernier concept sketch, showing the
superposition between curves when the equality (9) is

reached.

hand, it cannot be performed several times per beam
due to its high computational time-cost.

In conclusion, the combination of a music-based re-
moval together with a preliminary unwrapping allows a
reliable ambiguity-phase removal with a bearable com-
putational time-cost. This reliability, however, is sub-
ject to the right estimation of both data covariance ma-
trix and the number of sources to be detected .

2.4 Vernier method

The Vernier method [7] requires at least two aligned
pairs of receivers with different baseline to determine
the number of phase rotations. This configuration al-
lows this method to provide an unambiguous, referenced
phase. The Vernier method is based on Eq. (2), where
the number m of 2π rotations is to be estimated. When
m is unknown, a family of solutions exists for each cou-
ple of sensors, corresponding to m possible wavefronts.
Yet, the physical wavefront coming from the sea bottom
with an angle θ, is unique and common to both couples
if the two receivers are aligned. Thus, the Vernier prin-
ciple is based on the existence of a couple (m1,m2) that
verifies the following equality:

Δϕ1λ1

2πB1
+m1

λ1

B1
= cos(θ + ψ) =

Δϕ2λ2

2πB2
+m2

λ2

B2
(9)

Equation (9) is the general expression of the Vernier
removal condition. See then that this method can be
carried out either in the frequency domain (using one
couple of sensors with different carrier frequencies) or
in the spatial domain (using two couples of sensors with
different baselines but with the same carrier frequency).
Examples shown throughout this paper are obtained us-
ing the second solution due to the sonar specifications.

Fig. 6 illustrates an example of the Vernier removal
procedure, introducing two important concepts: 1) su-
perposition between phase differences, corresponding to
the equality defined in Eq. (9), and 2) copies or clones
of the initial phase difference. These copies are created
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Figure 7: Vernier-based ambiguity removal for the
same phase difference as in Fig. 5.

when increasing or decreasing the phase rotation counter
m, involving multiple ±λ/B phase-difference shifts (i.e.
vertical shifts in Fig. 6).

Note that this illustrative example corresponds to a
5-meter depth, ideal noiseless flat sea bottom. In prac-
tice, the collected data do not allow a perfect superposi-
tion due to noise. Consequently, a small error ε between
the phase differences of each couple of receivers remains:

ε(k) =
Δϕ1(k)λ

2πB1
+m1

λ

B1
−

Δϕ2(k)λ

2πB2
−m2

λ

B2
(10)

Then, the Vernier solution is given by the couple of nat-
ural values (m1,m2) that minimizes this error ε(k).

Several procedures can be regarded in order to re-
move the phase ambiguity [7]. Under the assumption
of phase continuity introduced in Section 2.3, a possi-
ble procedure consists first, in unwrapping the phase
difference before removing the phase ambiguity accord-
ing to the minimal distance between curves. Fig. 7
show the Vernier results compared to the music-based
removal represented in Fig. 5. The upper plots depict
the smoothed phase differences of each couple and their
corresponding unwrapped form. In this case, the start-
ing point of the unwrapping process was the first sample
of the analyzed interval, but it can be arbitrarily chosen.
The lower plot shows the copies of the unwrapped phase
difference for different values of m1 and m2 and the best
superposition that leads to the correct phase removal.

In conclusion, the Vernier-based removal together
with a preliminary phase unwrapping represents a quick,
reliable process that provides a phase difference refer-
enced to an absolute value. Its rapidity lies on the sim-
ple required algebraic operations.

3 Comparison between methods

The necessity of removing the 2π-phase ambiguity leads
to the estimation of the rotation counterm of each phase
sample. The unwrapping technique, in spite of being a
quick solution, does not provide an absolute-referenced
value. Thus, two quick, reliable solutions can be re-
garded, namely the music algorithm and the Vernier
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Figure 8: Complex ambiguity removal due to the
presence of several detected signals for a shipwreck
inspection, 20-meter depth (300-kHz Kongsberg

EM3002 multibeam echosounder).

method. The first solution demands the selection of
the snapshot where music is applied, the estimation of
the covariance matrix, its eigen-decomposition, and the
estimation of the number of sources. Concerning the
Vernier-based solution, in addition to a second couple
of interferometers, it demands two cross products, an
additional smoothing of the second phase difference and
the computation of a distance-error between samples.
See then that the Vernier-based removal is faster and
simpler (from an algebraic point of view) than a music-
based removal.

The significant drawback of using music to remove
the phase ambiguity comes up when several signals reach
the echosounder at the same time, resulting in a pseudo-
spectrum with several high, sharp peaks. Then, the
problem consists in knowing which arrival angle corre-
sponds to the phase sample. Remember that an inter-
ferometer can only detect one target per snapshot, while
music is theoretically able to detect M − 1 uncorrelated
sources per snapshot [6]. An illustrative example of this
problem is shown in Fig. 8, depicting a doa estimation
as a function of the slant range, obtained from a 20-
meter shipwreck survey. At 33-meter range, three echoes
corresponding to the sea floor, hull and bridge of the
shipwreck reach the antenna. Thus, according to the se-
lected peak, the phase ambiguity is differently removed,
resulting in a different doa estimation as pointed in the
lower plot. In this particular case, the peak associated
with the nearest doa to the beam pointing angle yields
the correct ambiguity removal. This criterion, however,
is not always true and it may happen that the strongest
peak leads to the correct removal. Therefore, the prob-
lem with music is a matter of management of the mul-
tiple target detection rather than the fact of detecting
them.

Conversely, the Vernier method does not need any
information about the scene, and removes the ambiguity
regardless of the position in the swath. Thus, each phase
sample only corresponds to a unique arrival source. In

Fig. 8, the phase ambiguity of two intervals of the phase
difference are independently removed, each one corre-
sponding to two different targets, namely the shipwreck
hull and bridge. As the target detected by each sensor at
sampling time is assumed to be the same, the superpo-
sition is evaluated between phase ramps describing the
same object. Therefore, multibeam interferometry only
detects the wreck hull at a 33-meter range. Nonetheless,
thanks to the beamforming procedure, interferometry
achieves to detect the seafloor, hull and bridge inside
different beams as shown in Fig. 8.

4 Conclusion

Multibeam interferometry allows one to access to a large
number of useful bathymetric soundings per beam. The
result is an increase of independent information per ping
and a richest target description as shown in Fig. 8.
The availability of this amount of information, how-
ever, is subject to the phase ambiguity removal. Here,
we have presented several techniques that, correctly ap-
plied, can lead to quick removals. Thus, the combination
of a phase unwrapping followed by a music detection
allows a reliable solution due to the good statistics of
music. However, the detection of multiple targets may
complicate the task. The other combination, consist-
ing in phase unwrapping before Vernier removal is not
concerned by the multiple-target problem and provides
a quicker procedure as it uses simple algebraic opera-
tions. Furthermore, the Vernier solution can be also
implemented without any priori unwrapping step [7].
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