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The characteristics of the acoustical signal in ocean are determined by both the refractive inhomogeneities (the 
perturbation of sound velocity) and the presence of ocean currents. The methods of acoustical tomography can 
be applied to the simultaneous reconstruction of both refractive and kinetic inhomogeneities. In this paper the 
problem of the combined refractive-kinetic inhomogeneites reconstruction by the tomography methods is 
considered. For the realization of proposed scheme so called band basis consisted of a number of intersected 
stripes is applied. The advantage of the band basis in tomographic applications is conditioned by the simplicity 
of solving the direct problem and the possibility of describing all types of inhomogeneities in a unified manner. 
The results of the reconstruction of model combined refractive-kinetic inhomogeneities in band basis are 
presented. The possibility of complete tomography reconstruction of two-dimensional flows based on the 
scattering data only is illustrated. 

1 Introduction 

The characteristics of an acoustic signal transmitted through 
the oceanic medium are determined both by the parameters 
of refraction inhomogeneities (e.g., deviations of the 
velocity of sound )(rсΔ ), and by the presence of liquid 
flows with velocity )(rv  in the medium [1]. This allows the 
application of tomographic methods for the reconstruction 
of combined scalar–vector inhomogeneities. For the first 
time, this approach to the problem of monitoring the 
oceanic medium was considered in [2] in the framework of 
the ray representation of acoustic field in the simple time-
of-flight geometry. Later, the diffraction tomography 
methods, which are based on the use of the amplitude and 
phase of the scattered acoustic field as input data, were 
developed [3-5]. 
The solution of sound propagation problem in three-
dimensional ocean can be reduced to a two-dimensional 
consideration. For example in the “vertical modes-
horizontal rays” representation of acoustical field and valid 
adiabatic approximation the two-dimensional independent 
problems for single modes propagation along horizontal 
rays can be considered. Below the tomography problem is 
developed in horizontal plane. 

2 Reconstruction of sound speed and 
current velocity: peculiar properties 

The existing schemes of tomographic reconstruction of 
two-dimensional combined inhomogeneities are based on 
the separation of their effects and a subsequent separate 
reconstruction of )(rсΔ  and )(rv  [3-5], where { }yx,=r  is 
the radius vector in the ),( yx  plane. The reconstruction of 
the inhomogeneity of sound speed )(rсΔ  is performed by 
the standard scalar tomography methods. However, the 
reconstruction of the flow velocity vector encounters some 
difficulties. In the general case, when the components 

)(v rx  and )(v ry  of the flow velocity vector )(rv  are 
independent functions, the problem of reconstructing the 
moving inhomogeneities in terms of ray representation is 
underdetermined [4-5], whereas the methods of wave 
(diffraction) tomography allow an unambiguous 
reconstruction of the total field )(rv  [3-5]. The 
tomographic reconstruction of vector inhomogeneities is 
considerably simplified when the flow of an incompressible 
liquid is considered, which is quite possible in application 

to many types of motion in the ocean. The 
incompressibility condition 0)(div =rv  represents a direct 
definition of a solenoidal vector field. In other words, in the 
incompressible liquid approximation the velocity of large-
scale motions in the ocean, including vortices and global 
currents of the Gulf Stream type, is a solenoidal vector field 
in a bounded region that does not contain the sources of this 
field. Then, the total field )(rv  is uniquely determined by 
the vector potential )(rΨ : )(curl)( rΨrv = . As a result, it 
becomes unnecessary to reconstruct the potential 
component of currents, which requires additional 
measurements of the normal component of the field )(rv  at 
the boundary of the water area under study [5-6]. Thus, the 
problem of reconstructing the current of an incompressible 
liquid is in this case reduced to the determination of its 
vector potential )(rΨ , or, in the two-dimensional case, its z 
component zrΨ ˆ),()( yxzz Ψ= , where ẑ  is the unit vector 
that is normal to the ),( yx  plane and forms a righthanded 
set of three vectors with unit vectors x  and y . In ray 
tomography, the Fourier transform of projection scattering 
data allows one to determine the spatial spectral 
components )(~ kΨ z  [6] of the vector potential )(rΨ z , i.e., 

to estimate the two-dimensional spatial spectrum )(~ kΩ z  of 

vorticity )(rΩ z  (curl v(r) = )(rΩ z , )(~2)(~ kΨkΩ zz k= , 
22 k=k  . After this, the flow velocity field )(rv is 

estimated as )(curl)( rΨrv z= , or, through the inverse 
Fourier transform of its spectral components )(~ kv : 

[ ] [ ])(~2)(~)(~ kΨkkkk Ωv zz iki ×=×= . The results 
obtained for the ray problem are generalized to the case of 
the wave (diffraction) tomography [3,5]: the Fourier 
transform of the scattering data in the domain of wave 
vectors k  allows one to estimate the spatial spectra )(~ kΨ z  

and )(~ kΩ z , which uniquely determine the solenoidal field 
of the liquid flow velocity. Thus, the incompressibility 
condition imposed on the liquid makes it possible to 
perform the reconstruction of the total field of its flow 
velocity with both ray and wave representations of acoustic 
field by using only the scattering data. This fact 
considerably simplifies the construction of the tomographic 
scheme and the related mathematics, because, in this case, 
first, no additional measurements of the normal velocity 
component are required at the perimeter of the water area 
(which earlier seemed to be necessary) and, second, it is 
possible to describe all the kinetic inhomogeneities 
(vortices and global currents), as well as the refraction 
parameters of the ocean, in the framework of a single 
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representation. In the present paper, we propose an 
algorithm of a combined tomographic reconstruction of 
two-dimensional scalar and vector inhomogeneities in the 
incompressible liquid approximation on the basis of their 
simple and concise representation. For this purpose, we use 
a nonorthogonal redundant basis with elements in the form 
of a set of intersecting stripes [7-8]. In [9], it was shown 
that such a basis is rather convenient for solving 
tomographic problems, because it facilitates the solution of 
the direct problem in constructing the perturbation matrix, 
i.e., the problem of the inhomogeneity reconstruction. 

3 The basis choice 

The combined refractive-kinetic inhomogeneities can be 
reconstructed by the suggested way both in the ray and 
wave presentation of the acoustic field expanding the 
characteristics upon the some basis. In solving the 
tomographic problem, we consider a circular water area 
with transmitting–receiving devices positioned along its 
perimeter. We assume that each of the sources in turn emits 
a signal, which is received by all of the receivers. 

3.1 Ray presentation 

In ray presentation the presence of an inhomogeneity 
distorts the ray trajectories and causes additional time 
delays, which serves as the initial data for the tomographic 
reconstruction of the inhomogeneity. The perturbation of 
the signal travel time along the ray connecting the i-th 
source–receiver pair due to the presence of flow velocity 
inhomogeneity )(-)()( 0 rvrvrv =Δ  ( 0)(0 ≡rv ) and sound 
speed perturbation )(-)()( 0 rrr ссс =Δ  with respect to their 
background values )(0 rv  and )(0 rс  in case of 

1)()( 0 <<rrv c  and 1)()( 0 <<Δ rr cc  has the form 

∫∫ −Δ−=Δ 0 2
0

00

0 2
0

0

)(
)()(

)(
)(

iL
i

iLi c
dl

c
dlct

r
rτrv

r
r   (1) 

where r)τ (0
i  is the unit vectors tangential to the trajectory, 

0
iL  in the unperturbed media. Performing sequential 

measurements with all of the source–receiver pairs, we 
obtain a set of measured quantities itΔ , which serve as the 
input data for determining the unknown )(rv  and )(rсΔ . 
At one of other stage of solving integral equations (1) 
written for different pairs i, their algebraization is 
performed. In this case, the characteristics of the medium 
are represented in the form of linear combinations of a 
finite number of scalar )(rjΘ , Jj ,1=  (for describing 

)(rсΔ ) and vectorial )(rΘ k , Kk ,1=  (for describing the 
currents and vortices) basis functions, not necessarily 
orthogonal but sufficiently complete for reconstructing the 
inhomogeneities with required accuracy. Then, )(rсΔ  and 

)(rv  are represented as 

∑
=

Θ′=Δ
J

j
jjxc

1

)()( rr , ∑
=

′′=
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kkx
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)()( rΘrv    (2) 

and the system of equations (1) determined for all the i-th 
source–receiver pairs takes the form 

∑∑∑
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=′′′′+′′=Δ
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m
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kik
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jiji xAxAxAt

111
, KJM += . For 

convenience, below we use the representation in the matrix 
form in terms of the Dirac notation:  for a column vector 

and  for a row vector. In this form, the system of 
equations under study has the form 

TXA Δ=      (3) 

where the perturbation matrix [ ]AAA ′′′=  consists of two 

blocks with the elements ∫ −Θ−=′ 0
2

0 )()(
iL jij dlcA rr , 

( )∫ −−=′′ 0
2

0
0 )()()(

iL kik dlcA rrτrΘ . The column vector TΔ  

consists of the values of signal delay times itΔ , and the 
vector X  consists of unknown dimensionless expansion 
coefficients of the reconstructed inhomogeneity in terms of 
the basis functions )(rjΘ  and )(rΘk . The solution of 
system (3) is obtained by the least squares method (LSM) 
and can be regularized in the simplest case by adding a unit 
matrix E with weighting factor 2γ  to AA+ . As a result, the 
solution takes the form 

( ) TAEAAX Δγ+= +−+ 12ˆ ,  (4) 

where the plus sign denotes Hermitian conjugation and the 
regularizing coefficient 2γ  controls the balance between 
the minimization of the norm of the solution and the norm 
of discrepancy. Thus, integral equations (1) are reduced to 
systems of linear algebraic equations in unknown 
coefficients of expansion of the functions )(rсΔ  and )(rv  
in terms of the chosen bases. It is important that, unlike [6], 
in the proposed approach, we do not explicitly separate the 
effects of refraction and liquid flow described by the scalar 
and vector potentials with a subsequent separate 
reconstruction of the solenoidal and vortex-free 
components of the flow velocity. Instead, we solve the 
problem of a complete reconstruction in a single procedure 
for all of the inhomogeneity components responsible for the 
perturbations observed in the received data. In the process 
of solution, it is unnecessary to operate with spatial spectra 
in the explicit form. The perturbation matrix A in Eq. (3), 
which is constructed for a sufficiently large number of 
transmission and reception aspects, in the course of the 
solution takes into account all the reconstruction 
possibilities considered in [6].  
When solving a specific tomographic problem, it is 
important to choose the basis functions that are adequate to 
the problem, so that they allow one to describe with 
sufficient accuracy the distributions of )(rсΔ  and )(rv  
with minimal requirements imposed on both the algorithmic 
part of the reconstruction process and the practical 
realization of the process of data acquisition and processing 
at a given accuracy of data. Below, in reconstructing the 
inhomogeneities, we use a stripe basis [8], which has the 
form of a set of parallel stripes uniformly covering the 
region under tomography and rotated at a constant angular 
step within the interval from 0 to π. The basis functions of 
perturbations, )(rjΘ  and )(rΘk , are preset within the 
stripes, where their values are assumed to be constant. The 
comparison of the stripe basis with conventional ones (of 
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the type of nonoverlapping squares densely covering the 
region under consideration) showed that they are equally 
effective from the viewpoint of the quality of 
inhomogeneity reconstruction [9]. However, the use of the 
stripe basis has some advantages from the mathematical 
point of view: the rigorous completeness and orthogonality 
of the basis are not necessary, the construction of the 
perturbation matrix is simplified, the description of all the 
types of inhomogeneities, including the vector ones, is 
unified, and the continuity condition for the incompressible 
liquid (which is necessary for a unique reconstruction of 
vector inhomogeneities) is automatically taken into 
account. 

Fig.1 Strip basis. 

As the input data for solving the tomographic problem in a 
given region, the background values of the parameters of 
the medium )(0 rс  and )(0 rv , for example, the season-
average values, may be used. In each stripe, the 
perturbation of sound speed is determined in the form of a 
base function )(rjΘ ; it causes a perturbation of the 
received data (a variation of ray travel times or a resulting 
field perturbation), which is calculated for each of the 
source–receiver pair. Such calculations performed for all 
the basis stripes oriented at all the angles leads to the 
perturbation matrix A′  determining the effect of scalar 
inhomogeneities )(rcΔ  in Eq. (1). The perturbation of the 
flow velocity in the form of basis functions )(rΘk  
determines the perturbation matrix A ′′  describing the effect 
of the vector inhomogeneities )(rvΔ  in Eq. (1). It is 
assumed that the flow direction )(k rv  coincides with the 
direction of the stripes, and the magnitude of its velocity is 
the same for all the basis functions. Solution (4) of system 
(3) yields the expansion coefficients X  in terms of the 
bases introduced in Eqs. (2). The inhomogeneity is 
estimated using Eqs. (2) by weighted summation of 
perturbations in the stripes, i.e., by summation of the basis 
perturbations with weighting factors equal to the values of 
the reconstructed coefficients X . To improve the quality 
of reconstruction, one can use a priori information about the 
desired inhomogeneities. Since real oceanic 
inhomogeneities are characterized by a smooth structure 
without sharp boundaries, the spatial spectrum of the 
reconstructed inhomogeneity can be corrected by filtering.  

3.2 Wave presentation 

The ray representation of acoustic field is approximate. The 
wave approach is more rigorous, exact, and practically 
realizable in the low-frequency range. The diffraction 
tomography is based on the wave equation. Within the first 
approximation by the Mach number ( 0cv ) and under the 
assumption that the flow is quasi-stationary, the wave 
equation for an inhomogeneous moving medium that is 
written for an acoustic field harmonic in time, ),( yy ′U , is 
reduced to the Helmholtz equation: 

).,()(
)(

2
),()(),()(),(

2
0

2
0

2

yyrv
r

yyryyryy

′∇
ω

−

−′ε=′+′∇

U
c

i
UUkU

 (5) 

Here, y  and y′  are the points of reception and 
transmission, )()( 000 rr ck ω=  is the wave number in the 
background medium, )()()( 22

0 rrr kk −=ε  is the scatterer 
function, and the time dependence is ~exp(–iωt). The 
solution of Eq. (5) for the total field ),( yy ′U , which 
consists of the incident field ),(0 yy ′U  and the field 

),( yy ′ΔU  scattered from the inhomogeneities of the 

medium that are localized in the region ℜ, can be 
expressed through the Lippmann–Schwinger equation, 
which in the Born approximation has the form 
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Here, ),( ryG  is the Green function for the background 
medium and )(0 rk  is the wave vector determined by the 
direction of propagation of the incident wave. Then, we 
consider a system of equations of the type of Eq. (6) that is 
written for a given number of source–receiver pairs. Under 
the assumption that the deviation )()( 0 rr cсΔ  is small, the 

scatterer function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−ω=ε

)(
1

)(
1)( 22

0

2

rr
r

cc
 is represented 

in the form )(
)(

2)( 3
0

2

r
r

r c
c

Δω≈ε . Expansion ((2) of 

inhomogeneities )(rcΔ  and )(rv  in terms of the bases 
)(rjΘ  and )(rΘk  allows us to obtain a system of 

linearized equations expressed in the matrix form as 

UXA Δ=ˆ     (7) 

Here, the perturbation matrix [ ]AAA ˆˆˆ ′′′=  consists of two 

blocks ∫ℜ ′Θ=′ ryr,rry
r

dUG
c

A ijiij )()(),(
)(

ω2ˆ
03

0

2

 and 

( )∫ℜ ′ω−=′′ ryr,rkrΘry
r

dUG
c

A iiik )()()(),(
)(

2ˆ
002

0

0  with the 

elements of the vector UΔ consists of the values of 
acoustic field perturbations. The regularized LSM solution 
of system (7) is determined by Eq. (4) with the substitution 

AA ˆ→ , UT Δ→Δ . The use of the perturbation matrix 
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constructed for the given number of insonification aspects 
inexplicitly takes into account the difference in the 
character of the effects of scalar and vector inhomogeneity 
components, thus providing the possibility of reconstructing 
the incompressible liquid flow velocity and the values of 
the phase velocity of sound [3, 5] 

4 The reconstruction of combined 
refractive-kinetic inhomogeneities in 
ray acoustic tomography 

The eikonal equation for an inhomogeneous moving 
medium allows the determination of ray trajectories iL  and 
the signal delay times itΔ  in the region containing scalar-
vector inhomogeneities )(rcΔ , )(rv . We assume that the 
perturbations are limited in strength and possess no 
singularities (e.g., causing multipath propagation). This 
assumption is necessary for the unambiguous construction 
of the perturbation matrix A and solution of tomographic 
problem (3). In modeling, we considered a water area of 
radius 510=aR  m surrounded by Z = 18 transmitting–
receiving devices uniformly distributed along its perimeter. 
The perturbation matrix [ ]AAA ′′′=  consists of two 
separately calculated blocks A′  and A ′′ . The unperturbed 
medium with a constant velocity of sound is immobile. The 
magnitude of the basis flow velocity was 1 m/s, and the 
sound velocity perturbation in each of the stripes was 
assumed to be 5 m/s. The matrix [ ]AAA ′′′=  was 
determined by the geometric method, and the blocks A′  
and A ′′  were constructed using identical numbers of basis 
stripes P = 8 and angles of their rotation B = 31. The right-
hand side of system (3) was determined from the eikonal 
equation. The regularizing coefficient 2γ  in Eq. (4) was 

310−  of the maximum eigenvalue of the matrix AA+ . 
Figure 2 shows the results of a simultaneous reconstruction 
of the components of a combined inhomogeneity in the 
form of a rectilinear flow, a vortex, and a refraction 
component. The rectilinear parallel flow with a velocity 
magnitude of 0.5 m/s and a limited width of aR3.0  is 
oriented at an angle of 5π/4 to the abscissa axis (the chosen 
width and rotation angle do not coincide with the 
corresponding parameters of any of the basis stripes). The 
Oseen vortex is characterized by the azimuth velocity 
profile ( ) rrrrr ′−′−−−Ω= ]exp1[)(v 2

0
22

00 RR | and 

the parameters 0Ω  = 0.00006 rad/s, aRR 3.00 = , and 
{ } { }aa RRyx 4.0,4.0, −=′′=′r . The refraction 

inhomogeneity of the phase velocity of sound has a 
Gaussian form [ ]22

0 exp)( σ′−−Λ+= rrr cc , Λ = 4.9 
m/s, aR25.0=σ , and { }aa RR 5.0,5.0−=′r . 

As one can see from Fig. 2, the structure and the positions 
of the inhomogeneities under study and the values of the 
velocity vector for the flow and the vortex are reconstructed 
with acceptable accuracy.  

5 Conclusion 

The reconstruction of the flow velocity (both streams and 
eddies) with refraction inhomogeneities can be done by use 
of the same scattering data. This fact considerably 
simplifies the tomographic problem and allows to develop 
the new scheme for combined refractive-kinetic 
inhomogeneities reconstruction. It is important that, unlike 
common methods, in the proposed method the refraction 
and flow inhomogeneities are reconstructed in the unified 
approach. The application of the stripe basis, together with 
the widely discussed possibility of using the ocean noise 
instead of sound sources, may give the opportunity of 
development for a new tomographic scheme with 
reasonable requirements imposed on the practical 
realization. 
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Fig.2 Distributions of the (a) flow and (b) refractive components of a combined inhomogeneity and the 
results of their reconstruction (c), (d). The reconstructed distribution of the flow velocity vector (e). 
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