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The possible realization of passive ocean tomography based on the widely discussed relation between the 
Green’s function and ambient noise cross-coherence is discussed. The problem is considered in the mode 
representation of acoustic field in adiabatic approximation. It is shown that the use of the vertical arrays with 
vector receivers allows a decrease in the accumulation time to one or several hours, depending on the conditions 
of experiment. The mode structure of acoustic field is determined from the cross-correlation matrix of the noise 
field received by the hydrophones of short vertical arrays bent by the ocean currents and covering only the part 
of the sound channel. The proposed algorithm allows a compensation of antenna declination from the vertical 
profile and takes into account of the finite length of antenna aperture, that ordinary takes place in ocean 
experiments.  

1 Introduction 

Nowadays the practical implementation of ocean acoustic 
tomography is greatly restricted by the technical difficulties 
such as deployment of long vertical arrays, complexity of 
precise determination of hydrophones positions in space, 
problems of low frequency sound radiation and others. All 
these aspects considerably increase the cost of experiments 
and complicate its realization. As a result the ocean 
acoustic tomography is applied only in single scientific-
research experiments without real opportunity of realization 
as day-to-day method for monitoring large ocean areas. 
In this paper the attempt to find the solution some of 
mentioned above problems is made. The problems with the 
low frequency source could be solved by using the relation 
between the Green’s function and coherence function of the 
noise field [1]. The key point of this problem is the time of 
noise field accumulation required for a reliable 
determination of the Green’s function for the purposes of 
ocean tomography [2]. This question is poorly analyzed in 
literature and must be additionally investigated. 
The solution of sound propagation problem in three-
dimensional ocean in mode representation with valid 
adiabatic approximation can be restricted to the solution of 
two-dimensional independent problems for single modes 
propagation. In Section 2 the horizontal planar problem on 
the determination of the Green’s function for a single mode 
from the noise cross-coherence function is considered. The 
approach proposed is somewhat different from previous 
considerations [3]; it is based on the integral expression of 
the Huygens principle in the Helmholtz formulation (for 
harmonic signals) with a further extension to the case of 
broadband processes. The special attention is paid to the 
determination of the Green’s function type (outgoing or 
incoming), which makes it possible to offer in Section 3 the 
possibility of reduction of the noise signal accumulation 
time with the use of vector receivers. In Section 4 in 
vertical plane the problem of modal processing for noise 
field received by curved antennas, not covering the whole 
ocean waveguide, is considered. The developed method 
provides the information about ocean mode structure that is 
necessary for the solution of tomography problem. As 
distinct from the commonly applied methods of 
instrumental control of antenna declination [4], the method 
proposed allows algorithmic compensation of antenna 
curvature without application any additional devises. 
Below, a circular water area begirt around the periphery 
with vertical multielement arrays is considered (Fig. 1). 
 

Fig.1 Schematic diagram of the passive mode tomography 
with short curved antennas. 

2 Estimation of the Green’s Function 
from the noise cross-coherence function 

It is assumed that the noise field is created by uncorrelated 
sources uniformly distributed in space. The monochromatic 
component )( ωr,U  of the signal received at the point 

Arr =  inside the region S  (Fig. 2) can be expressed in 
terms of the Helmholtz–Kirchhoff integral (noise sources in 
S  are neglected in comparison with external ones): 
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n  – is the external unit normal to contour L  at the current 
integration point. The close contour L  is arbitrary and for 
simplicity it is a circle with the center at the poin Ar  and 
the radius LA rr −=ρ  (Fig. 2). The functions 

),,( ω+
LAG rr  and ),,( ω−

LAG rr  are the outgoing and 
incoming Green’s functions, respectively. Below, the 
dependence on ω  is omitted. Equation (1) with function 

),( LAG rr+  describes the field  )( AU r created by external 
sources and expressed in terms of the field )( LU r←  
entering the region S . On the other hand, consideration of 

),( LAG rr−  in Eq. (1) allows representation of the field 
)( AU r  as a partial cause of signal appearance at the points 

of the circle Lr . In this case Eq. (1) describes )( AU r  in 
terms of the field )( LU r→  outgoing from the region S  
(Fig. 2). Therefore, the choice of the Green’s function type 
governs the propagation direction of the signal between the 
points under consideration. Using ),( LAG rr+  in Eq. (1) it 
could be obtained: 
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where brackets < > denote averaging over an ensemble of 
realizations of the noise field and the asterisk * denotes the 
complex conjugation. It is assumed that 1>>ρk , where k  
is the wave number and the point A  is the center of the 

circle L  (Fig. 2). In this case )()( LL ikUU rr
n ←← −≈
∂
∂ , 

),(),( LALA ikGG rrrr
n

++ ≈
∂
∂  for all Lr , and relation (2) 

takes the form: 

∫ +
←←← ><≈><

L LABLBA dLGUUikUU ),()()(2)()( ** rrrrrr . (3) 

In general case the main contribution to the integral (3) is 
made by points Lr  situated close by the point Br , because 
high-frequency oscillations of the real and imaginary parts 
of the integrand in Eq. (3) vanishe after integration along 
the contour L . In this case Eq. (3) can be rewritten as: 

),()()()()( **
BABBBA GUUiDUU rrrrrr +

←←← ><≈>< , 

where fkLD 2=  is the dimensionless coefficient and fL  is 
the effective length of the contour L  close to Br  along 
which the noise fields )( LU r  produce the coherent 
contribution to the Green’s function. Considering the 
alternative form of Eq. (1) with the incoming Green’s 

function ),( LAG rr−  ( ),(),( LALA ikGG rrrr
n

−− −≈
∂
∂ ), and 

selecting the field propagating from Ar  to Br  

( )()( LL ikUU rr
n →→ ≈
∂
∂ ), the relation can be obtained: 
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→→→ ><−≈>< . Without 
special selection of the direction of noise signal arrivals, the 
coherence function of the fields will allow estimating the 
additive combination of the Green’s functions for opposite 
directions of signal propagation between the hydrophones: 

><−

−≈><
−

+

)()()],(

),([)()(
*

*

BBBA

BABA

UUG

GiDUU

rrrr
rrrr

.  (4) 

In the case of a broadband noise, one must consider the 
wave equation whose Green’s function ),,( tG BA rr±  is 
related to the Green’s function of the Helmholtz equation 

),,( ω±
BAG rr  through the Fourier transform. Multiplying 

both sides of Eq. (4) by ωτ−

π
ie

2
1  and integrating the result 

with respect to ω  within infinite limits, one can obtain 
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where >η−=<η )()()( * tUtUC r,r,  is the autocoherence 
function of noise. The factor )2exp( π= ii  on the right-
hand side of Eq. (5) points to the phase shift 2π . This fact 
must be taken into account in tomographic problems. 
In the case of the noise signal reception in a relatively 
narrow frequency band ]2,2[ 00 ωΔ+ωωΔ−ω , 

10 <<ωωΔ , within which the noise characteristics vary 
slightly, the multiplication of both sides of Eq. (4) by 

ωτ−

π
ω iei

2
 and integration of the result with respect to ω  

leads to relation: 
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From Eq. (6) it follows that the time derivative of the cross-
coherence function of the narrow-band noise signal, 
received at two points allows estimating the time structure 
of narrowband fragments of both outgoing (for signal 
delays 0>τ ), and incoming (for 0<τ ) Green’s functions 
at these points.  

Fig.2 Schematic diagram of the tomography in the 
horizontal plane. Light arrows show the propagation 

directions of the fields entering the region S  ( )( LU r← ) and 
leaving it ( )( LU r→ ). 

3 Estimation of required 
accumulation time 

If the statistical characteristics of the noise field are such 
that the ergodicity condition is valid, the averaging over the 
ensemble of realizations in Eqs. (5), (6) can be replaced 
with averaging over time. Here, an important question 
arises about the time that is required to determine the 
Green’s function from the coherence function of the noise 
field with the required output signal-to-noise ratio 

outout NS . The squared input signal-to-noise ratio 

( )2inin NS  in the correlator is proportional to the ratio of 

the effective length of the region fL , where the sources of 
secondary noise field are coherent, to the length of the 
whole contour L . The value fL  can be estimated as 

><><≈ ∫ )()()()( **
BBL BLf UUdlUUL rrrr . For a 

cylindrically isotropic noise field 
( )()()()()( 0

**
LBBBBL kJUUUU rrrrrr −=><>< ,

)(0 LBkJ rr − is the zero-order Bessel function), the 
estimated value is kL f 2≈ , where λπ= 2k . So it can 
be obtained: 
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( ) ( )ρπλΔ=Δ≈ 22
ininoutout 222 fTNSfTNS . 

For parameters 510=ρ  м, fΔ  = 50 Hz, λ  = 15 м, 
10outout =NS , the collection time can be estimated as 

Т ≈  13000 s. For reduction of the achieved value an 
additional consideration is proposed. 
As was shown in Sect. 2, the reception of the noise signal 
with nondirectional hydrophones and the subsequent 
calculation of the noise cross-coherence function results in 
a simultaneous estimation of both outgoing ),( BAG rr+  and 
incoming ),( BAG rr−  Green’s functions. Thus, in the case 
of nondirectional hydrophones application for 
reconstructing either  ),( BAG rr+ or ),( BAG rr−  only a 
portion of the received signal is significant. It reduces the 
signal-to-noise ratio outout NS  and, as a consequence, 
overestimates the required accumulation time. A possible 
way to improve the outout NS  ratio consists in using vector 
receivers, that offers a possibility of selecting the fields 
coming in and outgoing from the region of interest. It yields 
an additional (approximately by a factor of two) increase in 
the inin NS  ratio of each receiver and leads to a fourfold 
improvement of the signal-to-noise ratio. As a result, the 
use of vector receivers offers a possibility of decreasing the 
accumulation time by a factor of four till T ≈  1 hour. 

4 Selection of modes by short curved 
vertical arrays 

Fig.3 Vertical section of the region of tomography. Two 
arrays positioned at the points Ar  and Br  have Ii ,1= , and 

Jj ,1=  receiving hydrophones. 

Bellow the problem is considered in vertical plane passing 
through the two vertical arrays deployed in Ar  and Br , 
respectively (Fig. 3). Displacements of hydrophones 

)(zArΔ , )(zBrΔ  from strict vertical position lead to 
additional phase shifts of the signals. In approximation 

1)( <<ρΔ zAr , 1)( <<ρΔ zBr , BA rr −=ρ , the field 
received on antennas can be represented as: 

,)(),(),,(,)(),(),,(
11
∑∑
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ϕ=ψ=
M
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M

k
kAkA ztbtzUztatzU (((( rrrr  

where [ ])(exp)()( zrizz Bmmm ′Δκϕ≡ϕ( , 

[ ])(æexp)()( zrizz Akkk ′Δψ≡ψ(  are the profiles of “curved” 
modes and )(zkψ , )(zmϕ  are exact modes at the points Ar  

and Br . The coefficients ),( ta Ak r(  and ),( tb Bm r
(

  contain 
information about space and power-spectrum parameters of 
mode excitation; M  is the number of propagating modes; 

kæ  and mκ   are the horizontal wave numbers of modes in 
the places of antennas deployments. The projection of 
hydrophones displacement )(zArΔ , )(zBrΔ  on the plane of 
consideration are )(zrA′Δ , )(zrB′Δ . 

Representation of the noise field in a finite frequency band 
fΔ  as a sum of curved modes is valid in the approximation 

of the quasimonochromatic modes. In this case it is 
necessary that the mode profile will not change essentially 
on the boundary frequencies of fΔ  and the difference of 
propagation times for a mode with the fixed number but 
different frequencies must be less than fΔ1 . More over, 
additional signal propagation times caused by the 
hydrophone displacement should not exceed fΔ1 , i.e. the 
signal distortion caused by the antenna curvature can be 
expressed as phase shifts. 
Elements ),,( τΓ BAij r r  of the cross-coherence matrix 

),,( τΓ BA r r  of the noise field received by the i th 
hydrophone of the array at Ar  and j th hydrophone of the 
array at Br  are defined as 

),,(),,(),,( * τ−=τΓ tzUtzU jBiABAij rrr r , Ii ,1= , 

Jj ,1= . If the modes are incoherent (that is true for 
incoherent noise sources), then 

),,(),(),( * τμδ=τ− BAmkmBmAk tbta rrrr
(( , where function 

),,( τμ BAm rr  is defined by the mode number m  and 
horizontal range between antennas under consideration; 
symbol kmδ  is the Kronecker delta. In this case 

∑
=

ϕψτμ=τΓ
M

m
jmimBAmBAij zz

1

* )()(),,(),,( ((rrr r . (7) 

Eq. (7) is very similar to well known expression of acoustic 
field in a wave guide as a sum of modes: 

∑
=

ϕψτ=τ
M

m
jmimBAmBAij zzaU

1

* )()(),,(),,( ((rrrr . 

Relation between functions ),,( τBAma rr  and ),,( τμ BAm rr  
can be obtained from Eq. (6): 

∫
∞

∞−
ωΔ ηηη−τω

τ∂
τμ∂

dCa BAm
BAm )(),,(~

),,(
0 rrrr . If noise 

characteristics vary slightly in the frequency band ωΔ  then 
),,(~),,( ττμ BAmBAm a rrrr , and 

22 ),,(~),,( ττμ BAmBAm a rrrr . (8) 

From Eq. (8) follows that the functions ),,( τBAma rr  and 
),,( τμ BAm rr  achieve their maximum values at the same 

times τ . As result, the problem of propagation time 
definition for different modes can be reduced to the 
problem of coefficients ),,( τμ BAm rr  reconstruction using 
noise measurement data. In matrix representation with the 
use of Dirac’s notation (  for the column vector and  
for the row vector), the matrix ),,( τΓ BA r r , for the fixed 
time delay τ , assumes the form: 
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column vectors composed of the values of “curved” modes 
at different depths. For brevity the dependence of the 
functions mμ  and Γ  on the delay time τ  and radius-
vectors Ar , Br  bellow is omitted. The consideration of the 
square matrix +ΓΓ  (sign «+»stands for the Hermittian 
conjugation) allows to obtain the relations for determination 
of functions 2),,( τμ BAm rr : 
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where N  is the number of nonzero eigenvalues nλ  of 
matrix +ΓΓ , MN ≥ . It must be pointed out that curved 

mode profiles mϕ
( , mψ(  and values 

2*
mmm μ=μμ  in 

general case are not equivalent to the eigenvectors nϕ̂ , 

nψ̂  and eigenvalues nλ . If approximation 

kmkmkmkm zzzz ϕϕ≈ϕϕψψ≈ψψ (((( ),()()()( * , km ≠  is 
valid, then from Eq. (9) one can obtain the system of linear 
equations: 
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The elements of the matrix  

[ ]...2... 21211111)2( ψψϕϕψψϕϕ≡Ψ are assumed 
to be defined from the measurements of the sound speed 
profile at the points of antenna deployment (for example, 
using CTD measurements). The right-hand part B  is 
defined by eigenvectors nψ̂  and eigenvalues nλ  of matrix 

)()( τΓτΓ +  for the fixed τ ; *μμ  is a vector of unknowns. 
The solution of the system (10) can be obtained by the least 
squares method (LSM) and then regularized in the simplest 
case by summing )2()2( ΨΨ+  with diagonal matrix D  with 

elements 2
mγ  on the diagonal: 

( ) noise
)2(

1
)2()2(

* BD +−+
∧

Ψ+ΨΨ=μμ . In the numerical 

modelling coefficients 02 =γm  when Mm ,1=  and for 

2)1(,1 ++= MMMm  values 2
mγ  are equal to 810−  of 

maximum eigenvalue of matrix )2()2( ΨΨ+ . Such selective 
regularization is appeared to be more optimal and gives less 
estimate variance. 
Thus the problem of mode structure reconstruction using 
data from short curved antenna is reduced to the solution of 

the system of linear equation relatively unknown squared 
modules of mode propagation coefficients. 

Fig.4 Hydrologies at the points of antennas deployment and 
corresponding them normalized profiles of the first modes. 

In numerical modeling two vertical antennas separated by 
м102 5×=ρ  are considered. At the places of antenna 

deployment the sound speed profiles are different, that 
yields the different mode profiles )(zkψ , )(zmϕ  (Fig. 4). 
Two configurations of antennas are investigated. Firstly, 
both antennas are uncurved and cover the whole 
waveguide, have the same length of м4000  and same 
numbers of hydrophones 100== JI . In the case of short 
curved antennas they have the same length of м500  and 
the same numbers of hydrophones 50== JI . The top 
ends of the both antennas are deployed at the depth of 

м200 . It is assumed that arrays are forced by ocean flows 
with constant with depth projection of velocity on the plane 
of consideration м/c2.0v =A  and м/c3.0v =B , 
respectively; to the bottom ends of antennas the weights are 
attached with the same mass кг30 . Under these conditions 
the curvatures of antennas profile were calculated (Fig. 5). 
The hydrophones  

Fig.5 Declinations of profiles for considered antennas. 

receive the noise signals propagating in the plane of 
consideration with uniform density power in frequency 
band Hz10=Δf  with central frequency Hz800 =f  
during s400=T . The signal was consisted from 10=M  
incoherent modes. Figure 6а, 6b shows the time 
dependence of normalized squared module of the total field 

∑∑ τΓτΓ≡τΓ
ττ∈τ jiji

ijij
,],[,

2

21

22norm )(max)()(  received 
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by all hydrophones of antenna in Ar , as if this field was 
radiated by all hydrophones of antenna in Br . Figure 7a, 7b 
shows the time dependence of normalized squared modules 
of mode propagation coefficients for all ten modes 

,)()(max)()()(ˆ
,],[,

2

21

22norm ∑∑ ϕτΓϕτΓ≡τμ
ττ∈τ jiji

jmijjmijm zz

 that are obtained using standard procedure of mode 
filtering by multiplication of the field received by vertical 
array on mode profiles. When there are no hydrophone 
displacements and antennas are long enough 

2

21

22norm )(max)()(ˆ
],[

τμτμ≅τμ
ττ∈τ

mmm  (Fig. 7a) and 

standard mode processing provides excellent result. But it is 
clearly shown on Fig. 7b that in the case of short curved 
antennas common approach of mode filtering yields 
unsatisfactory results. Figure 8a, 8b shows the dependence 

of ,)(max)()( 2

21

22norm

],[
τμτμ≡τμ

ττ∈τ
mmm  where 

functions *2)( mmm μμ=τμ , 10,1=m , are estimated using 
new method (10). The maximum values of 

2norm ),,( τμ BAm rr , 10,1=m , are clearly seen, and 
propagation times of different modes in case of both long 
vertical (Fig. 8a) and short curved (Fig. 8b) antennas can be 
identified unambiguously. It should be mentioned that on 
Figure 7, 8 only nine peaks separated in time are observed 
instead of ten expected. Point is that the sixth and seventh 
modes are not separated in propagation times for 
considered hydrologies and frequencies but they can be 
identified using developed method of mode processing. 

5 Conclusion 

The cross-coherence matrix of the noise field received by 
the hydrophones of two short curved vertical arrays yields 
the information about the mode structure of field in the 
ocean. The estimated time of signal accumulation required 
to determine the Green’s function shows the possibility of 
implementing the schemes of the passive mode tomography 
of the ocean. The use of the vertical arrays with vector 
receivers allows a decrease in the accumulation time to one 
or several hours, depending on the complexity, required 
accuracy, and resolution of the tomographic problem to be 
solved. 
For decreasing the accumulation time the wide frequency 
band should be considered. On the other hand the modes 
within this frequency band must be quasi monochromatic 
and compensation signal processing should give 
opportunity to neutralize the possible antenna declinations. 
Antipathy of these conditions leads to the necessity of 
additional investigations of methods to synthesize data 
obtained for some narrow frequency bands. 
The very important simplification for considered problems 
is the adiabatic approximation. A violation of adiabaticity 
results in an increase in the accumulation time and a 
complication of the algorithms of tomographic 
reconstruction. In this case new problems arise that must be 
solved before discussing the efficiency of the proposed 
approach. 
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  6a         6b 
Fig.6 Time dependence of total field received by long 

uncurved (a) and short bent (b) antennas. 

  7a          7b 
Fig.7 Results of mode filtering using mode orthogonality in 
the case of long uncurved (a) and short bent (b) antennas. 

      8a         8b 
Fig.8 Results of mode filtering based on eigenvalues and 

eigenvectors of noise cross-coherence matrix consideration 
in the case of long uncurved (a) and short bent (b) antennas. 
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