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Abstract     The localization of noise sources from a specified direction may often be accomplished with an 
array of sensors. One commonly used processor consists of delay and add networks: a conventional beamformer, 
however its spectrum suffers from the Rayleigh resolution and its performance is highly degraded, specially in 
lower frequency range. In the communication, the performance of some typical high-resolution sensor array 
processing algorithms: Minimum Variance and MUSIC algorithms are investigated for wideband source 
location. Their performances are compared with a new source localization algorithm which is based on a sparse 
representation of sensor measurements with an overcomplete basis composed of samples from the array 
manifold. The key of the method is the use of the SVD for data reduction and the formulation of a joint multiple-
sample sparse representation problem in the signal subspace domain. Increased resolution and improved 
robustness to noise is obtained. Numerical examples are presented. 
 
 

1 Introduction 

Arrays of sensors are used in many fields to detect signals, 
to resolve closely spaced targets, to estimate the bearing, 
the position, the strength and other properties of radiating 
sources whose signals arrive from different directions. The 
emitted source of energy can be acoustic (sound-waves), 
electro-magnetic (radio-waves), vibrations (signals of 
geophysical nature), chemical (detection of vapours and 
gaseous pollutants from different substances), and so on, 
and the receiving sensors may be any transducers that 
convert the received energy to electrical signals. The type 
of sensors used to detect these signals differ accordingly: 
microphones for the acoustic signals, electromagnetic 
antennas for radio waves, accelerometers/seismometers for 
the detection of earthquakes, ultrasonic probes and X-ray 
detectors in medical imaging, containers with membranes 
or biosensors for gas and vapour detection and so forth.  In 
all these highly diverse applications of array signal 
processing, the sensors are designed with one basic 
objective in mind: to provide an interface between the 
environment in which the array is embedded and the signal 
processing part of the system and the physical manner in 
which this interface is established depends on the 
application of interest. In these applications, the goal is to 
determinate the distribution of the emitted energy in the 
medium (air, water, rock, etc) that surrounds the array. For 
example, in industrial environments to localize complex 
noise fields, in underwater surveillance with sonar systems, 
in communications to separate speakers, in seismology for 
the monitoring and analysis of global earthquakes, in all 
these cases signals received by sensor arrays are processed 
to obtain estimates of their strength and direction of arrival. 
 In this paper we are concerned in industrial noises 
localization which have significant effects on labor’s health 
and community living quality. It is highly desired to 
develop methods that are capable of locating noise sources 
in an accurate and systematic manner before any noise 
control measure can be applied. Conventional ways of noise 
source identifications include, for example, sound pressure 
measurement, sound intensity measurement and acoustic 
holography. These methods suffer from the drawbacks of 
being either inaccurate or being restrictive in only small 
areas or short distances when applied to complex noise 
fields in industrial environment.  
In this communication, noise source localization techniques 
by using an array of sensors are presented. The 
performances of these methods in the localization of closely 
spaced broadband sources and in a considerable 
background noise are presented.  The approach taken here 

is to assume that the signal field at the array is comprised of 
N independent plane wave arrivals from unknown 
directions and the problem reduces to estimating the K 
directions in a background noise environment. One main of 
the work described in the paper is to provide estimators 
which are simple to implement on line. These estimators 
are based on acoustic processing algorithms: the 
conventional beamforming, the Minimum Variance (MV), 
the Multiple Signal Classification (MUSIC) and the sparse 
signal reconstruction (or l1-SVD) estimators are presented 
and their performances are compared. Some additional 
estimators (Root-Music and ESPRIT) require the restrictive 
assumption that the array of sensors is linear. This is 
assumption is not necessary with algorithms developed 
here. Finally, we introduce the following typical 
assumptions: signals are homogenous in the vicinity of the 
array, all receivers have the same sensitivity, the array does 
not distort the signal field, the medium in which the signals 
propagate is non-dispersive and the sources and the array 
lie in the same plane. 

2 Signal representation and spatial 
correlation matrix 

The receiving array considered in this communication has 
M omnidirectional sensors and is immersed in an acoustic 
noise field which consists of K independent discrete 
sources. Because of the geometric positions of the sensors, 
the total signal power incident on each sensor is the same, 
but the phase information is different on each receiver. The 
purpose of any estimator is to use the phase information in 
some way to infer which signals reached the receiving array 
and the goal of sensor array source localization is to find 
the locations of sources of wavefields that impinge on the 
acoustical array. The available information is the geometry 
of the array, the parameters of the medium where 
wavefields propagate and the time measurements or outputs 
of the sensors. For purposes of exposition, we first focus on 
the narrowband scenario. For a set of K sources, the signals 
observed at the outputs of the M sensors array are 
represented by the M-dimensional vector [1,2,3] 
  

                  x(t) =    ∑
=

K

1i
a( iθ ) si(t) + n(t)                       (1) 

 

where si(t) is the complex amplitude of the ith source. It is a 
zero-mean complex random variable : E[si(t)] = 0. The 
signal power pi of the ith source which we wish to localize is 
represented by its variance pi = Var[si(t)]=E[si(t)si(t)*]. Here 
E[ ] denotes an ensemble average and the superscript* 
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represents the complex conjugate. The direction of arrival 
of the ith signal is represented by the M-dimensional vector 

a )(θ i =[ T

M21
])iθa....)i(θ a)i(θa ( , often called the array 

manifold vector or the steering vector or the directional 
mode vector and n(t) is the additive noise. The noise is 
assumed to be spatially white (independent or uncorrelated 
from sensor to sensor) and the same power level of noise is 
present in each receiver. With these assumptions, the cross-
spectral matrix for the noise alone is RN = E[n(t)n(t)H] = 
pNI where pN is the noise power, I is the (MXM) identity 
matrix and the superscript H denotes the complex-conjugate 
transpose operation. Equation (1) may we rewritten in the 
matrix form  
 

               x(t)  =  A s(t)  +  n (t)     t ∈{t1, t2,…tN }          (2) 
 

The (MXK) matrix A where each column is a source 
direction vector, is the so-called array manifold matrix. For 
any single plane wave arrival, the outputs from the M 
individual receivers will differ in phase by an amount 
determined by the geometry of the array and the arrival 
direction. In other words, the elements Aqr of the matrix A 
are functions of the signal arrival angles and the array 
elements locations. Thus, one has Aqr = exp(jφ qr) where 
φ qr is the phase of the signal at the qth receiver from the rth 
source, measured relative to some arbitrary reference point. 
That is, Aqr depends on the qth array element, its position 
relative to the origin of the coordinate system, and its 
response to a signal incident from the direction of the rth 
source. s(t) is the K-dimensional vector, the components of 
which are the complex amplitudes of the sources. It can 
readily be seen that the output signal from the qth sensor 
may be written as      
 

                xq(t) = ∑
=

K

1r
Aqr ( θ ) sr(t)   +  nq(t)                    (3) 

 

Since the K arrivals are by assumption independent, the 
correlation matrix between the different signal sources is 
  

           RS=E[s(t)s(t)H] = diag(p1, p2,…,pK)                      (4) 
 

and at the operating frequency, the spatial correlation 
matrix (or covariance matrix) of the receiver outputs may 
be expressed, for signals uncorrelated of each other and of 
noise, as     
 

                    R = E[x(t)x(t)H] = ARSAH + RN                   (5) 
 

In practice, the spatial correlation matrix is estimated by a 
finite number of time domain samples (snapshots) and the 
following estimated form is used  
  

                       R̂ = ∑
=

N

1iN
1 x(ti)x(ti)H                             (6) 

 

Where x(ti) is the array signal vector sampled at time ti and 
N is the number of such samples. The caret  (^) denotes an 
estimated value. 

We can now derive a variety of estimators used in sensor 
array source localization.   

3 Estimators for source localization  

3.1 The conventional beamformer 

  Signal direction estimation is one of the main tasks in 
array processing and the most commonly used method is 
the conventional beamformer, also called the ’’time delay 
and sum’’ or ’’unweighted add-squarer’’ beamformer. The 
major step of the conventional estimator consists of 
delaying and summing the outputs from each sensor to 
yield the total array output [1,2,3] 
 

                                    y(t) = a( θ )Hx(t)                             (7) 
 

It follows that the output power of the array is 
 

                pCB( θ ) = E[ 2)t(y ] = a( θ )H  R a( θ )             (8) 
 

The signal direction is indicated by the value of θ at which 
the output power is maximized. It follows that the 
beamforming estimates of the direction of arrivals are given 
as the K largest values of the scalar function pCB( θ ). 
Equation (8) is also known as the angular power spectrum 
of the conventional beamformer. The resolution of this 
beamformer, which is usually defined by its 3-dB 
beamwidth, is proportional to the reciprocal of the array 
aperture measured in wavelengths. So, for small array the 
resolution is poor. The beamformer also has high sidelobes 
that may cause a signal leakage problem: weak signals may 
be hidden by the presence of strong signals in the sidelobes. 
Despite the simplicity, the conventional beamforming 
algorithm suffers from resolution problems when the 
sources are close to each other. Furthermore, the 
beamwidth of this beamformer is very sensitive to 
frequency variations and then unsuitable for broadband 
source localization.  
 

3.2 The minimum variance estimator 

The minimum variance (MV) estimator was originally 
proposed by Capon who conducted a frequency 
wavenumber analysis on earthquake data analysis. The 
conventional beamformer can be considered as a kind of 
linear spatial filter with data-independent coefficients. In 
contrast, the minimum variance method (or Capon’s 
method) can be considered as a kind of data-dependent 
spatial filter, in which the coefficients are chosen such that 
the filter has constant gain at a particular direction while its 
output power is minimized. The underlying principle of the 
method amounts to finding an optimal steering vector wopt 
such that the array output power is minimized while 
maintaining the gain along the look direction to be constant, 
say unity [1,2]. That is, 
 

                                  min  wH R w                                   (9) 
                                   w 
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                                  subject    wH a( θ )  = 1                 (10)                       
 

Minimizing the resulting beam energy reduces the 
contributions to this energy from sources and noise not 
propagating in the direction of look. The solution of this 
constrained optimization problem occurs often in the 
derivation of adaptive array processing algorithms. The 
solution technique is to use a Lagrange multiplier λ  and a 
cost function  
 

                    H(w) = wH R w + 2 λ ( wH a( θ ) - 1)         (11)       
 

The gradient with respect to w is  
 

                       grad H(w) = 2 R w + 2 λ  a( θ )             (12) 
 

and the minimum of the cost function is obtained when  
 

                               wopt = - λ R-1 a( θ )                          (13) 
 

But wopt must satisfy the constraint, one then has 
 

                           λ  = (-aH ( θ ) R-1 a( θ ))-1                    (14) 
 

                     Wopt = R-1 a( θ )(aH ( θ ) R-1 a( θ ))-1         (15) 
 

and the corresponding array output power is 
 

          pMV( θ ) = E[ 2)t(y ]  =  (aH ( θ ) R-1 a( θ ))-1       (16)         
 

The goal of the minimum variance estimator is that the 
contributions of the signals from directions other than θ  to 
the array output are minimized while the signal at direction 
θ passes through without any distortion. Equation (16) is 
also known as the angular power spectrum of the minimum 
variance estimator and the signal directions are found by 
the locations of the spectrum peaks. The peaks level of the 
spectrum give a good estimate of the true targets power and 
the spectrum also has uniformly low sidelobes. Simulations 
have shown that this estimator gives satisfactory resolution 
if the number of snapshots is high. The algorithm does not 
require any knowledge of the number of sources present 
and can also be used with irregular arrays. It is expected 
that this estimator performs better than the classical 
beamforming and has super-resolution provided that the 
SNR is moderately high, the sources are not strongly 
correlated and the number of snapshots is sufficient.  
The two estimators described previously do not make any 
assumption on the covariance structure of the data and they 
assume that the functional form of the array’s transfer 
vector a( θ ) is known. The array performs a spatial 
sampling of the income wavefront, which is analogous to 
the temporal sampling done by the tapped-delay line 
implementation of a temporal finite impulse response (FIR) 
filter. The functional form of a( θ ) characterizes the array 
as a spatial sampling device and, assuming it is known, 
should not be considered to be parametric information. An 
array for which the functional form of a( θ ) is known is 
said to be calibrated. 
The common advantage of the two estimators developed 
previously is that they do not assume anything about the 

statistical properties of the data and, therefore, they can be 
used in situations where we lack information about these 
properties. The parametric approach to direction of arrival 
estimation is the subject of the next section.   
 

3.3 The multiple signal classification 
estimator 

The parametric methods for direction estimation explicitly 
assume a certain structure of the array output covariance 
matrix R and the multiple signal classification algorithm 
(MUSIC) [4] is based on the eigensystem analysis of this 
spatial correlation matrix. It is assumed that the theoretical 
covariance matrix has the expression given by (5) and that 
the signal sources covariance matrix RS=E[s(t)s(t)H] has full 
rank K. Assume that M>K and that the directional mode 
vectors a( θ 1), a( θ 2) , …., a( θ K)  are linearly independent. 
Then the array manifold matrix A has full column rank K. 
This fact, together with the assumption that RS has full rank 
K, yields  
 

                                rank (ARSAH) = K                          (17) 
 

It follows that ARSAH has K strictly positive eigenvalues, 
the remaining (M-K) eigenvalues all being equal to zero. 
Assume that the eigenvalues λ i , i=1, 2,…,M of the spatial 
correlation matrix R are arranged in decreasing order : 
λ 1 ≥ λ 2 ≥ ......≥  λ M . If jλ

~
 is an eigenvalue of the matrix 

ARSAH  and uj the eigenvector of R corresponding to the 
eigenvalue λ j , then  
 

   R uj  = λ j uj ⇔ ( ARSAH +pN I ) uj = ( jλ
~

+pN) uj     (18)               
 

so that λ j = jλ
~

+pN . This means that the eigenvalues of the 
array data covariance matrix R are  
  

           
⎪⎩

⎪
⎨
⎧

+=
=+λ

=
M,...,1Kip
K,...,2,1ip~

λ
N

Ni
i            (19) 

 

We have thus found that λ 1 ≥ λ 2 ≥ ....≥ λ K  > λ K+1= λ K+2… 
= λ M = pN. In fact, the eigenvalues of R ca be split into two 
groups, one containing the K eigenvalues that are larger 
than pN and one containing the M-K eigenvalues that are 
equal to the noise power pN .  
Let US and UN be the matrices whose columns are the 
orthonormal eigenvectors of R corresponding to the two 
groups respectively. Then the eigenvalue decomposition of 
R can be partitioned as  
 

                 R = (US   UN)  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

N

S

Λ0
0Λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
H
NU

U H
S                  (20) 

 

where SΛ contains the K largest eigenvalues of R and NΛ  
contains the M-K smallest eigenvalues of R which are 
equal to pN. Using the orthogonality of US and UN we get 
from (20) that 
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                          R UN =  UN NΛ  = pN UN                        (21) 

and from (5) we obtain  
 

                       RUN = ARSAH UN + pN UN                      (22)                    
 

Thus ARSAH UN = 0 and, since the matrix ARS has full 
rank, we have  
 

                                  AH UN = 0                                      (23) 
 

The columns }{ ku  of UN belong to the null space of AH, a 
fact which is denoted by uk∈N(AH) : UN lies in the null 
space of AH. Again, since rank(A) = K, the dimension of 
N(AH) is equal to M-K which is also the dimension of the 
range space of UN. We have dimN(AH) = M-K = dimR(UN) 
and it follows that R(UN) = N(AH). The vectors }{ ku  span 
both R(UN) and N(AH) and due to its orthogonality property 
with respect to AH, R(UN) is called the noise subspace of R. 
Now, since by definition US

H UN = 0, we also have R(UN) = 
N(US

H); hence, N(US
H)= N(AH). Since R(US) and R(A) are 

orthogonal complements to N(US
H) and N(AH), it follows 

that R(US) = R(A) and R(US) is called the signal subspace of 
the array data covariance matrix R. 
We have shown that the spatial correlation matrix R has M-
K smallest eigenvalues pN and the associated eigenvectors 
are orthogonal to the signal direction vectors (see 23). 
Noting iθ  the arrival angle of the ith source we have from 
equation (23) 
 

 H
NU a( iθ ) = 0 or aH ( iθ ) uj = 0 ; i=1,..,K; j=K+1,..,M (24) 

                   

This orthogonality is used in the MUSIC algorithm to 
estimate the signal directions. The angular spectrum 
function of the MUSIC algorithm is defined as  
 

                    pMUSIC( θ ) = 
2M

1Kj
j

H )θ(

1

∑
+=

ua
                (25) 

 

This equation can be rewritten in terms of UN as 
 

                 pMUSIC( θ ) = 
)θ()θ(

1
H
NN

H aUUa
                   (26) 

 

It can be seen that the denominator of the MUSIC spectrum 
function is the square norm of the projection of the 
directional mode vector a( θ ) on to the noise subspace, 
which will be zero when θ  is the signal direction according 
to the orthogonal relations (23 and 24) and the peaks of the 
function pMUSIC( θ ) yields the direction of arrival of the 
signals. Therefore the MUSIC algorithm is also known as a 
subspace projection algorithm. For equation (25) or (26) to 
be meaningful, the condition that M>K has to be satisfied. 
This restricts the minimum number of sensors to be greater 
than the total number of sources. The initial guess on the 
source number K then becomes important and a test is 
required to determine the number of signals presented. 
However, simulation results show that the MUSIC 
algorithm as very good resolution, even for a small number 

of snapshots. Its spectrum is very stable with low sidelobes. 
Statistical analysis has also shown that the algorithm has a 
lower SNR resolution threshold. This estimator is also 
applicable to nonuniform arrays and in contrast with the 
previously discussed techniques pMUSIC( θ ) has no direct 
relation to the physical signal power; it simply exhibits 
sharp peaks at the estimated source locations. We propose a 
sparse signal reconstruction estimator which has better 
robustness to low SNR and in a broadband scenario than 
the Conventional Beamformer.   
 

3.4 The sparse signal reconstruction 
estimator 
 
We present now a source localization method based on a 
sparse representation of sensor measurements [5]. The basic 
idea of enforcing sparsity in overcomplete basis 
representations is described as follows. We consider an 
overcomplete representation of the array manifold matrix A 
in terms of all possible locations.  We introduce a sampling 
grid of possible source locations of interest { }K'θ~,....;2θ

~,1θ
~ . 

The number of potential sources K’ is greater than the 
number of sources K and form the matrix A( θ~ ). The 
important point is that A is known and does not depend on 
the unknown source locations { }Kθ,....;2θ,1θ  as in (2). We 
represent the signal field by a K’x1 vector )t(~s , where the 
ith element )t(~

is  is nonzero and equal to sk(t) if source k 

comes from direction θ~ i for some k and zero otherwise. 
 

                        )t(~
is  = 

⎪⎩

⎪
⎨
⎧ =

otherwise0
θθ~if(t)s kik                    (27) 

 

Then the problem takes the form  
 

                             x(t) = A( θ~ ) )t(~s  + n(t)                    (28) 
 

and the important points are that A is known and that the 
source localizations are now encoded by the non zero 
indices of )t(~s . We have transformed the problem from 
finding a point estimate of θ , to estimating the spatial 
spectrum of  )t(~s , which has to exhibit sharp peaks at the 
correct source locations.  
In principle, one can use the overcomplete basis 
methodology to solve a signal representation problem at 
each time instant. However, this leads to a significant 
computational load and to sensitivity to noise. Instead, we 
would like to use all the sensor time data in synergy using 
an SVD approach. To this end, the data x(t) are viewed as a 
cloud of N points lying in a K dimensional subspace. 
Instead of keeping every time sample, we can represent the 
cloud using its K largest singular vectors corresponding to 
the signal subspace. Let X = [x(t1), x(t2), …,x(tN)] and 
define S and N similarly. Then we have 
 

                              X = A( θ~ ) S +N                                (29) 
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Take the singular value decomposition of the (MxN) data 
matrix:  X= WLVT and keep a reduced (MxK) dimensional 
matrix containing most of the signal power  
 

                            XSV = WLDK = XVDK                       (30) 
    

where DK = [ IK 0]T , here IK is a KxK identity matrix and 0 
is Kx(N-K) matrix of zeros. Also, consider SSV = SVDK and 
NSV = NVDK. We obtain XSV = A( θ~ ) SSV + NSV. The 
matrix SSV is indexed by i in the spatial dimension and by k 
in terms of the singular vector and we want to impose 
sparsity in SSV only spatially. This can be done by first 
computing the l2 norm of all SSV values for a particular 
spatial index i 
 

    )2(
is~ l = 

2

SV
i

SV
i

SV
i )K(s),....,2(s),1(s    , i=1,2,…, θN    (31) 

 

The sparsity of the resulting θN x1 vector )2(~ ls corresponds 
to the sparsity of the spatial spectrum and we can find the 
spatial spectrum of s~ by minimizing the cost function 
associated with the Frobenius norm 
 

                        1
(l2)

2

f
SVSV

~λ)θ~( sSAX +−            (32) 

 

Now we have an objective function containing the term 
1

(l2)~s  which is neither linear nor quadratic to minimize. 
We turn to second order cone (SOC) programming which is 
a suitable framework for optimizing functions [6].   
In the case of wideband source localization we work in the 
frequency domain: the time samples are grouped into 
several snapshots and transformed into the frequency 
domain 
 

                x(n)(f) = A(f)s(n)(f) + n(n)(f)    ; n =1,…Ns       (33) 
 

The signal spectrum is separated into several narrowband 
regions, each of which yields to narrowband processing. 
For each frequency f we have Ns snapshots and we are 
interested in a 2-D power spectrum as a function of both 
direction of arrival θ  and frequency f.  

4 Simulation results 

We present an example where a linear array of 10 sensors is 
used to localize 3 narrowband sources with DOAs 50°, 75° 
and 100°. A SNR of 20 dB is considered and 1000 temporal 
samples used in the algorithms. Figure 1 shows the 
localization of these three sources with the conventional 
beamforming estimator and two high resolution estimators 
presented in the paper.Using the conventional beamforming 
we cannot separate the sources. Figure 2 shows the 
wideband scenario: three wideband signals consisting of or 
two harmonics are present. At DOA 75° there are two 
harmonics with frequencies 200 and 550 Hz, at direction of 
arrival 110° there are again two harmonics with frequencies 
200 and 400 Hz and at DOA 85° there is a single harmonic 
with frequency 550Hz. Figure 2 represents this scenario and 

we can see the weakness of the conventional beamforming 
estimator.                    
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         Fig.1 Three sources localization 
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         Fig.2 Five sources localization 

5   Conclusion 
We have presented four methods to source localization and 
compared these methods with the conventional 
beamformer. We are exploiting the robustness of the sparse 
signal reconstruction estimator and compared it with MV 
and MUSIC estimators. 
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