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Spherical near field acoustic holography (SNAH) is a recently developed technique that makes it possible to re-
construct the sound field inside and just outside an acoustically transparent spherical surface on which the sound 
pressure is measured with an array of microphones with negligible scattering. Because of the versatile geometry 
of a sphere SNAH is potentially extremely useful for source identification. On the other hand a rigid sphere is 
somewhat more practical than an open sphere, and it is possible to modify the SNAH theory so that a similar 
sound field reconstruction can be made with an array of microphones flush-mounted on a rigid sphere. However, 
this approach is only valid if it can be assumed that the sphere has a negligible influence on the incident sound 
field, in other words if multiple scattering can be ignored, and this is not necessarily a good assumption when the 
sphere is close to a radiating surface. This paper describes the modified SNAH theory and examines the method 
through simulations. 

1 Introduction

Microphone arrays can be used for numerous purposes, 
e.g., speech enhancement [1], noise mapping and source 
identification [2], determination of room acoustic parame-
ters [3, 4], and recording of sound [5]. Microphone arrays 
can have any shape, but in the last few years spherical mi-
crophone arrays have been used increasingly. The micro-
phones of a spherical array can be distributed inside an 
acoustically transparent sphere [6], placed on the surface of 
an acoustically transparent sphere [3], or flush-mounted on 
a solid, rigid sphere [4]. Microphone arrays with this ge-
ometry have several attractive features. For example, it is 
obvious that a beamformer based on a spherical micro-
phone array with a high density of the transducers will have 
essentially the same angular resolution in all directions.  
The applications mentioned above are forward problems. 
For example, beamforming usually takes place far from the 
sources under examination, and the purpose is to map the 
far field. However, spherical microphone arrays can also be 
used for near field acoustic holography, that is, for recon-
structing the sound field between the array and the source 
[7]. This is an inverse problem, and here the spherical array 
has the significant advantage compared with conventional 
planar arrays that the usual problem of a finite measurement 
aperture is nonexistent. 
The investigation recently described by Williams et al. [7] 
was based on an open (transparent) sphere. However, a 
rigid sphere is somewhat more practical than an open 
sphere. To this can be added the fact that the boundary con-
ditions are better defined, since it is unlikely that an ar-
rangement with, say, fifty microphones with preamplifiers 
and cables placed relatively close to each other would not 
disturb the sound field, as assumed in Ref. [7]. Moreover, it 
has recently been demonstrated that a rigid sphere is advan-
tageous compared with a transparent sphere (quite apart 
from the problem of scattering) in beamforming [8]. There 
might be a similar advantage in spherical near field acoustic 
holography (SNAH). Anyway, it would be practical if the 
same spherical array could be used both for beamforming 
and for near field acoustic holography. On the other hand 
there is a serious potential problem in mounting the micro-
phones on a solid sphere: in near field acoustic holography 
the measurement array is always placed fairly near the 
source under test, because otherwise the evanescent waves 
will have died out and cannot be reconstructed near the 
source. The waves that are backscattered from the sphere 
are likely to be reflected by the surface of the source, and 
thus they may modify the incident field; and there is no way 
to distinguish between the original sound field and such 

reflections. This problem can be expected to depend on the 
frequency, on the size of the sphere, and on the shape of the 
source. 
This paper examines SNAH based on a solid sphere by a 
simulation study. 

2 Outline of theory 

The theory is a fairly straightforward extension of the the-
ory recently presented by Williams et al. [7]. Obviously, the 
rigid sphere gives rise to scattering, and therefore the total 
sound pressure is the sum of the incident (that is, undis-
turbed) sound pressure and the scattered sound pressure, 
 tot i sp p p . (1) 

Both the incident and the scattered pressure must be de-
scribed in terms of solutions to the Helmholtz equation in a 
spherical coordinate system with the origin at the centre of 
the sphere. Thus the angular variations of the two compo-
nents must be described in terms of ‘spherical harmonics’ 
[9], that is, in terms of the form 
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in which Pm
n  is an associated Legendre function [9]. The 

radial dependence of the incident pressure must be de-
scribed in terms of spherical Bessel functions ( j )m that re-
main finite also at the origin of the coordinate system, but 
the scattered pressure, which obviously exists only outside 
the sphere, should be described in terms of spherical 
Hankel functions (h ).n  The Hankel functions should de-
scribe an outgoing field, and are therefore of the second 
kind because of the sign convention used in this paper 

j(e ).t  It follows that the incident and scattered pressure 
can be written 
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Because the sphere is rigid the normal component of the 
particle velocity and thus the gradient of the total pressure 
vanishes on its surface, 
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It follows that 

 ' 'j ( ) h ( ) 0mn m mn nA ka C ka . (6) 
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The amplitudes of the scattered waves can now be de-
scribed in terms of the amplitudes of the incident waves, 
and the expression for the total sound pressure becomes 
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Thus the total sound pressure on the surface of the sphere is 
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If this is multiplied with a complex conjugated spherical 
harmonic and integrated over the whole solid angle then, 
because of the orthogonality of the spherical harmonics [9], 
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the corresponding unknown coefficient mnA results, 
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Once the coefficients have been determined the incident 
sound pressure follows from Eq. (1). 
The incident particle velocity can also be determined, 
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Finally the incident sound intensity can be calculated from 
the sound pressure and the particle velocity in the usual 
way, 

 *
i i i½ Re pI u . (14) 

To summarise, if the sound pressure is known on the sur-
face of a rigid sphere then the entire incident sound field 
can, at least in principle, be reconstructed. 
In practice one obviously cannot expect perfect reconstruc-
tion. Inside the sphere the problem is a forward one, but 
outside the sphere the problem is an ill-posed inverse one. 
Besides, the sums must obviously be truncated. Moreover, 
the sound pressure is only known at a finite number of dis-
crete positions. Thus, in practice the coefficients mnA are 
determined by numerical quadrature.  

3 Reflection of the scattered field 

As mentioned in the foregoing there is a potential problem 
in the use of a solid sphere for SNAH: the sound field scat-
tered back towards the source by the sphere will be re-
flected by the source and thus change the incident sound 
field. Obviously the reflection depends on the shape and 
size of the source. However, a point driven simply sup-
ported baffled vibrating panel might be a suitable test case. 

The panel can be modelled with a conventional modal sum; 
the sound field generated by the panel can be calculated 
using a numerical approximation to Rayleigh’s first integral 
[9], i.e. by replacing the panel with a collection of mono-
poles; and the reflections of the backscattered field can be 
taken into account by introducing an image sphere behind 
the panel. The image sphere scatters the sound emitted by 
the monopoles, and the (primary) sphere will be exposed to 
the direct sound field and to the sound field scattered back 
from the image sphere. 

4 Results

In the following preliminary simulation study there are 50 
microphones flush-mounted on a sphere of radius a = 9.75 
cm. These microphones are assumed to measure the sound 
pressure at discrete positions on the sphere, and these posi-
tions and the weights used in the numerical integration are 
taken from the literature [10]. The resulting numerical inte-
gration is exact for products of spherical harmonics up to 
order N = 5, and therefore the sum over n is truncated at 
this value. Apart from the smoothing caused by this trunca-
tion no further regularisation is attempted. 

 
Fig. 1. Sound field generated by a monopole at a distance of 

40 cm from the centre of the sphere at ka = 1. Recon-
structed sound pressure on a concentric spherical surface of 

radius 15 cm. 

 
Fig. 2. Sound field generated by a monopole at a distance of 
40 cm from the centre of the sphere at ka = 1. Phase of re-
constructed sound pressure on a concentric spherical sur-

face of radius 15 cm. 
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Fig. 3. Sound field generated by a monopole 20 cm from 

the centre of the sphere at ka = 2. ‘True’ and reconstructed 
sound pressure along a line through the monopole and the 

centre of the sphere. 
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Fig. 4. Sound field generated by a monopole 20 cm from 

the centre of the sphere at ka = 5. ‘True’ and reconstructed 
sound pressure along a line through the monopole and the 

centre of the sphere. 

Figure 1 shows an example of reconstruction of the sound 
pressure amplitude generated by a monopole 40 cm from 
the centre of the spherical microphone array on a concentric 
spherical surface with a radius of 15 cm, that is, 5 cm from 
the surface of the rigid sphere. The frequency corresponds 
to ka = 1. Figure 2 shows the corresponding phase (with 
phase jumps of ).  
Figure 3 shows the result of a similar test case, although 
here the monopole is 20 cm from the centre of the array and 
the frequency corresponds to ka = 2. As can be seen the 
reconstruction is very good inside the sphere (from 0.1 to 
0.3 m), in particular in the direction away from the source, 
but the accuracy deteriorates outside the sphere when the 
distance to the surface exceeds 5 cm. Very similar results 
have been obtained at lower frequencies (not shown). How-
ever, the results shown in Fig. 4, which corresponds to ka = 
5, demonstrate that reconstruction is unacceptable outside 
the sphere at such high frequencies. 
Figures 5 and 6 show the result when the monopole that 
generates the sound field is more distant. In this case the 
monopole is 1 m from the centre of the array. It is apparent 
that the reconstruction is acceptable at a distance of up to 
10 cm from the surface of the sphere. 
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Fig. 5. Sound field generated by a monopole 1 m from the 
centre of the sphere at ka = 0.02. ‘True’ and reconstructed 
sound pressure along a line through the monopole and the 

centre of the sphere. 
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Fig. 6. Sound field generated by a monopole 1 m from the 

centre of the sphere at ka = 2. ‘True’ and reconstructed 
sound pressure along a line through the monopole and the 

centre of the sphere. 
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Fig. 7. Sound field generated by a monopole 2 m from the 

centre of the sphere at ka = 3. ‘True’ and reconstructed 
sound pressure along a line through the monopole and the 

centre of the sphere. 

Figure 7 shows similar results, but here the monopole is 2 
m from the centre of the array and the frequency corre-
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sponds to ka = 3. Because of the relatively high frequency 
the reconstruction deteriorates outside the sphere. 
Finally Fig. 8 shows an example of reconstructing the inter-
ference field generated by two monopoles at a fairly high 
frequency, ka = 5. In this case the reconstruction is only 
acceptable inside the sphere. 
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Fig. 7. Sound field generated by two monopoles 20 cm 

from the centre of the sphere (at different angles) at ka = 5. 
‘True’ and reconstructed sound pressure along a line 

through one of the monopole and the centre of the sphere. 

5 Conclusions 

Preliminary results from an investigation of spherical near 
field acoustic holography with fifty microphones flush-
mounted on a solid, rigid sphere have been presented. The 
results indicate that acceptable results can be obtained at 
distances up to twice the radius of the sphere at frequencies 
up to ka = 2. At frequencies above ka = 3 the region of ac-
ceptable reconstruction is limited to inside the sphere, and 
at still higher frequencies even this region is reduced. All in 
all spherical holography based on a solid sphere seems to 
give results of similar accuracy as spherical holography 
based on an open, acoustically transparent sphere does 
when the sound field is generated by point sources. How-
ever, point sources do not reflect sound, and it remains to 
be seen whether reflections of the backscattered field from 
the surface of a real source will be a serious problem or not. 
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