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Due to the periodicity of the composite structure the Floquet wave approach seems well suited for multilayered 
medium characterization. The pass and stop band domains for [0/45/90/-45] cross ply composites have been 
plotted. Dispersive guided wave propagation through a lossy composite laminates immersed in water have been 
investigated. Our interest is focused on a guided mode inside the frequency range from 1.6 MHz to 5 MHz. 
Within the considered frequency range, these modes have been pointed out by both reflection coefficient and 
density of energy analysis in term of incident angle. In this paper it is investigated how by fine-tuning the 
frequency and the incident angle, internal displacement and stress field vary in the multilayer. When the 
frequency is increased the mode changes from a plate mode to a surface mode. The description includes real 
Floquet wave numbers as well as complex wave numbers.    

 
 
 

1 Introduction        

       Multilayered systems are extensively used in many 
engineering areas (automotive and aeronautic fields among 
others). These materials are stacked of orthotropic laminas 
which assembled in different periodic stacking sequences 
of fibber directions to form multilayered structures as 
shown in Fig.1. Thus, such systems are highly anisotropic 
multilayered structures, which significantly complicate 
ultrasonic wave propagation [1,2,3]. The selection of 
ultrasonic inspection parameters is very difficult for these 
structures without comprehensive modelling for 
optimization of the experimental conditions and data 
interpretation.   
In such structures, modal waves, which propagate with a 
phase velocity in the direction of the layers plane, can be 
brought to the fore: they can be analogous to Lamb waves 
when the structure is finite in depth or Rayleigh-type when 
the structure is a semi-infinite periodic medium. In the last 
case, several Rayleigh wave families do exist and are 
dispersive, like Lamb waves; these waves have been called 
‘‘multilayered Rayleigh waves’’ [4,5]. 
 
Extensive studies of wave propagation in laminated 
composites were started in the 1960 by Achenbach and co-
workers [6] considering the laminate layers as isotropic. 
They described spectra of guided and Floquet waves and 
discuss a low frequency homogenization using static 
effective moduli theory. Shull et al [7] showed that the 
special Lamb wave dispersion behaviour is caused by the 
pass and stop bands of the Floquet waves in a plate 
containing four layers of aluminium and three layers of 
aramid-epoxy composite lamina.  There are few works on 
leaky waves that behaves as Rayleigh waves in infinite 
periodically stratified anisotropic media. In 1999, Potel et 
al studies the existence of multilayered Rayleigh modes in 
anisotropic periodically multilayered media.  
 
     The main objective of the paper is to study the guided 
wave in a lossy multilayered composite medium. In 
section 2, the stiffness matrix method for wave 
propagation in layered generally anisotropic media is 
briefly recalled. In section 3, the ultrasonic reflection and 
transmission characteristics are calculated according to the 
incident angles θ at different frequencies. Dispersive 
guided wave propagation through a loss composite 

laminates immersed in water have been investigated in 
section 4. The Floquet wave spectra in angle and 
frequency domains are used for interpretation of the 
results. In this paper it is investigated how by fine-tuning 
the frequency, the incident angle, internal displacement 
and stress profiles vary in the multilayer. The energy 
distribution inside the composite plate can also be used to 
detect the guided mode.  
 

2 Backgrounds     
2.1 Stiffness matrix  

In this section we will elucidate the stiffness matrix 
solution for generally anisotropic layers in a form suitable 
for multilayered system analysis. Let us consider a 
multilayered plate, consisting of N arbitrarily viscoelastic 
anisotropic layers as illustrated in Fig. 1.  
In the jth layer, the displacement vector ju may be 
written as the summation of six partial waves [8]: 
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Where T
jzyxj uuuu ),,(= , ),,( 321=η denotes thη  

partial wave and T represents the transpose. The 
superscripts d and u represent the downward (+z) and the 
upward (-z) travelling plane wave modes respectively; 

Tud
z

ud
y

ud
x

ud PPPP ηη ),,( ,,,, = are the unit displacement 
polarization vectors corresponding to waves with 

η)( d
zk and η)( u

zk wave vector respectively.  

The displacement polarization vector u,dPη  and vertical 

slowness component η)( ,ud
zm  are determined by solving 

the Christoffel equation (2) and applying Snell's 
law =jm// )0,,( 00

yx mm , where j =1, 2,...N and 0
//m  is the 

invariant x and y projection of the slowness vector for the 
incident wave: 
           0=− kikljijkl P)mmC( ρδ                                     (2)                                                                                    

 Where ijklC represent the layer elastic constants and ρ  
the density. 
 
The stress component vector on the x-y plane  

Tjjj
j ),,( 333231 σσσσ = parallel to the layer surface can 

be related to each of the plane wave displacement field 
using Hook's law: 
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Where the components j
u,d

i )d( of vector ud
jd , are related 

to the polarization vector )( ,ud
jP by [8]: 
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The displacement ju and stresses jσ on the upper and 
lower interfaces bounding layer j can be represented in 
matrix form 
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Where ud
jP , (3x3) matrix gathers together polarization 

vectors, ud
jA ,  the amplitude vectors of the waves going 

down (d) and up (u) and udH ,  a diagonal matrix which 
contain the corresponding wave phase shift and 

ud
jD , (3x3) = [ ududud ddd ,

3
,

2
,

1 ,, ]. 

By mean of matrices (3x3) several physical magnitudes as 
reflection and transmission energy coefficients could be 
easily computed. This becomes possible because stresses 
and displacements at the top (j = 0) and the bottom (j = N) 
interfaces of the multilayer are related together by 
application of the recursive procedure. The cell stiffness 
matrix cK [8] connecting separately displacements and 
stresses, on the level of the two interfaces of the jth layer, 
is obtained by substituting into Eq. (4.a) the amplitude 
vector ud

jA , from.Eq.(4.b).             
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The recursive algorithm leads to the global stiffness matrix 
K, which relates displacements ( Nuu ,0 ) to stresses 

( Nσσ ,0 ), subscripts 0 and N refer to the first and the last 
interface. To find the Floquet wave properties one applies 
the periodicity conditions [8,10]  
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where λ is the Floquet wave number component in the z 
direction and ch  the thickness of the unit cell. It relates the 

stresses and displacements on the top ( −− u,σ  ) and bottom 

( ++ u,σ ) surfaces of the cell (Fig.1).    

 
2.2 Reflection-transmission coefficients  

 
 The results provided in this paper have been obtained for 
quasi-isotropic composite with [0/45/90/-45] cells. The 
composite laminate with total thickness 2.88 mm has 24 
laminas (6 superlayers); the thickness of each lamina is 
0.12 mm. The properties of the lamina used in the model 
are those determined by Potel and al [5] given in table.1: 
the constants are complex, in other words the medium is a 
lossy one. 
 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 

Basing on the stiffness matrix method and the boundary 
conditions, we can calculate the reflection and 
transmission coefficients R, T by admitting that the 
stresses 0

13
0
23   , σσ  and N

1323   , σσ N in the multilayered one on 
the level of the interfaces with water are equal to zero. We 
can thus write displacements with these interfaces 
according to the stresses: 
           NSSu 3312

0
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0
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With Sij are blocks (3, 3) of the global compliance 

matrix: ⎥
⎦

⎤
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By writing displacements and stresses according to the 
reflection and transmission coefficients and by taking 
account of the boundary conditions, we can calculate the 
reflection and the transmission coefficients (R) and (T). 
The time-averaged energy density can be calculated and 
given by [9] 

          )Re(
2
1 *

ijiji SP σ−= ,                                           (10) 

Where ijS  is the stress tensor and *
ijσ the complex 

conjugate of the strain tensor. 
 
2.3 Multilayered Rayleigh  and Lamb and 
waves   

The characteristic equation for Lamb modes can be 
determined from the total stiffness matrix of the structure 
K or its inverse, the global compliance matrix S. If the top 
and bottom surfaces are free, the Lamb wave dispersion 
equation is determined as [10]                    
                0)det( =K                                                      (11) 

The characteristic equation for multilayered Rayleigh 
wave in a semi infinite layered structure is also can easily 
be found from the total stiffness matrix.. 
When the total layered system thickness or the frequency 
increase, the wavelength is less than the lamina thickness; 
the solution will approach for a semi-infinite periodic 
medium with properties of the top lamina. In this situation 
we will underline the existence of surfaces waves which 
were called multilayered Rayleigh waves and their 
correspondence with the combination of Floquet waves. 
The multilayered Rayleigh wave is a linear combination of 
three inhomogeneous Floquet waves.  
In Ref [5], Potel and al give several conditions on the 
propagation of multilayered Rayleigh waves that must 
satisfies: the cancellation of a (3x3) determinant 
corresponding to the boundary conditions for a 
vacuum/infinite anisotropic periodically multilayered 
medium structure. Moreover, the modulus of the reflection 
coefficient for a non lossy medium must be equal to one, 
whereas that of a lossy medium present a trough. Another 
important property is that all the Floquet waves must be 
inhomogeneous. 
Here, we will first confirm the conditions given by Potel et 
al [5]. Second, compare the numerical result for the 
reflection phenomena and the spectrum of pass and stop 
bands for three Floquet waves for [0/45/90/-45] composite.  
Finally, a density energy criterion on the propagation of 
guided waves (multilayered Rayleigh wave and Lamb 
wave) is given. 
 
At oblique incidence of ultrasonic waves on a multiply 
composite sample immersed in the water, the reflection-
transmission coefficients are calculated using Eq.(8), (9). 
Here we theoretically investigate wave reflection through a 
[0/45/90/-45]6 composite.  
Fig.4 (a) and Fig.4 (b) show the reflection coefficient for a 
multi-ply composite with 24 layers [0°/45°/90°/-45°]6 

layout with a total thickness 2.88 mm). The incident plane 
is oriented at 0° relative to the top lamina and at different 
frequency. The solid line corresponds without attenuation 
and the dashed line with attenuation.  
Starting from 2.5 MHz frequency, the critical angles 
between 0° and 50° were detected. Once a critical angle 
was found, the same critical angle was sought by 
changing the ultrasonic frequency. Frequency step sizes 
were increased by increments of 0.1 MHz while the 
incident angle step size was 0.1°. It should be noted here 
that representing the critical angle as a function of the 
frequency is equivalent to representing the velocity of the 
mode as a function of the frequency. If the medium of 
reference is water, the multilayered Rayleigh wave or the 
leaky lamb wave speed is given by 

                     R

water
R

V
V

θsin
=                                              (12)                  

where θR is the Rayleigh angle. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 (a): Reflection coefficient as function 
of incident angle of [0/45/90/-45]6 carbon-
epoxy at 2.5 MHz frequency.  
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Fig.2 (b): Reflection coefficient as function of 
incident angle of [0/45/90/-45]6 carbon-epoxy 
at 1.8 MHz frequency. 
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To analyse the mode detected numerically above, the 
spectrum of pass-stop bands for the three Floquet waves 
for [0/45/90/-45] periodic structure is represented as a 
function of incident angle θ and frequency with the 
propagation plane oriented at Φ = 0 as shown in Fig.3. 
White domains correspond to all three propagating waves, 
light gray to two propagating waves and darker gray to one 
propagating wave, black corresponds to the stop band for 
all three waves (no propagating waves permitted). In the 
same figure 3 is plotted the variation of critical angle with 
the frequency (dotted line), in other words, the dispersion 
curve of this mode. It can be seen that the dispersion of the 
mode is placed in different region of the Floquet waves 
pass and stop bands. This implies that the mode character 
change from leaky lamb wave to multilayered Rayleigh 
wave as will be displayed below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Furthermore, the analysis of the Floquet waves stop and 
pass bands given in Fig.3 displays that all the Floquet 
waves are inhomogeneous at 2.5 MHz and the incident 
angle is 19.8 (This mode is located in the stop band “black 
zone”). This satisfies the conditions given by Pot et al [5] 
to obtain multilayered Rayleigh wave. The determination 
of the critical Rayleigh angle can also be carried out where 
an abrupt maximum of the normalized density of energy 
occurs at the critical angle. In fact, the plot of density of 
energy versus incident angle is given by Fig.4 (a), displays 
that the energy increases quickly when the incident angle 
changes from 18 to 25 degrees. The maximum of value is 
obtained at the incident angle of 19.8°.   
As confirmation of these numerical results, Fig.5 and 
Fig.6 show the computed normal displacement profile 
along the thickness or depth of the plate. For the 
propagation of the multilayered Rayleigh waves (mode 
1), it can be seen that the amplitudes of the normal 
displacement or normal stress are negligible at the end 
of the medium. The reason of this approach is that for 
high frequencies the material behaves increasingly like 
a thick slab and hence the coupling between the upper 
and lower boundary surfaces is reduced.  However, for 
the propagation of lamb wave (mode 2), the normal 
displacement affect the entire multilayer.  Let us see 
now, for frequencies inferior to 2.5 MHz, at frequency 
equal to 1.8 MHz.  The critical angle dip is almost equal 
to 11.14° as shown in Fig. 2(b). The modulus of the 
reflection coefficient drops almost to zero. Fig.4 (b) 
shows the normalized density of energy versus the 
incident angle. From this figure we can observe that the 
density of energy increases very fast when the incident 
angle changes from 11 to 11.4° degrees. Its maximum 
position is also at incident angle of 11.14°. In addition, 
if we analyse the Floquet waves of stop and pass bands 
given in Fig.3, we can perceive, at this frequency and 
incident angle, only one non propagative Floquet waves 
exists. Consequently, the multilayered Rayleigh wave is 
converted to a leaky lamb wave for the plate. This 
indicates the propagation of multilayered Rayleigh 
wave. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3: Spectrum of pass-stop band of [0/45/90/-
45] carbon-epoxy.  
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Fig.4 (a): Normalized density of energy of 
[0/45/90/-45]6 carbon-epoxy versus incident 
angle at 2.5 MHz frequency.  
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Fig.4 (b): Normalized density of energy of 
[0/45/90/-45]6 carbon-epoxy versus incident 
angle at 1.8 MHz frequency.  
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4 Conclusion 

In this paper, dispersive guided wave propagation through 
a loss multilayered composite immersed in water have 
been investigated. When the   viscoelasticity of the 
medium is considered, the modulus of the reflection 
presents a trough at the Rayleigh angle whereas equal to 
one when lossless. Our interest is focused on a guided 
mode inside the frequency range 1.6-5 MHz. Within the 
considered frequency range, this mode has been pointed 
out by both reflection coefficient and density of energy 
analysis in term of incident angle. The propagation of 
guided waves is characterized by an abrupt maximum of 
the density of energy at the critical angle.  Normal 
displacement field along the depth of the plate have been 
represented in two cases: lamb wave and multilayered 
Rayleigh wave. In the first case, it can clearly show how 
the normal displacement or stress affects all the plate. In 
the second case, the amplitude decays along the depth of 
the plate as the mode propagates through. As a result, 
when the frequency is increased the mode changes from a 
plate mode to a surface mode.  
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Fig.5 (a): Normal displacement (U3) of 
[0/45/90/-45]6 carbon-epoxy versus depth at 
2.5 MHz frequency and 19.8° (multilayered 
Rayleigh mode).  

0 0.5 1 1.5 2 2.5 3

x 10
-3

-1

-0.5

0

0.5

1

1.5

Depth(m)

N
or

m
al

 d
is

pl
ac

em
en

t (
A

rb
.U

ni
t) f = 2.5 MHz

inc = 19.8°

0 0.5 1 1.5 2 2.5

x 10-3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Depth (m)

N
or

m
al

 d
is

pl
ac

em
en

t (
U

ni
t.A

rb
)

f = 1.8 MHz
inc =11.14°

Fig.6 (a): Normal displacement (U3) of 
[0/45/90/-45]6 carbon-epoxy versus depth at 
1.8 MHz frequency and 11.14° (lamb mode).  
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