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Many acoustic measurements, e.g. measurement of sound power and transmission loss, rely on determining the 
total sound energy in an enclosure. This quantity is usually estimated by measuring the mean square pressure at a 
number of discrete positions. The idea of measuring the total energy density instead on the assumption that this 
quantity varies less with the position goes back to the 1930s. However, until recently measurement of the total 
sound energy density has required an elaborate arrangement based on finite different approximations using at 
least four matched pressure microphones; therefore the method has never come into use. With the advent of a 
three-dimensional particle velocity transducer, ‘Microflown’, it has become somewhat easier to measure total 
rather than only potential energy density in a sound field. This paper examines the spatial variation of potential, 
kinetic and total sound energy density in enclosures theoretically and experimentally.  

1 Introduction

Many acoustic measurements rely on determining the sound 
energy in an enclosure. Examples include standardised 
measurements of sound power and transmission loss in re-
verberation rooms. The total sound energy is usually esti-
mated by measuring the mean square pressure (that is, the 
potential sound energy density) either at a number of dis-
crete positions or using a moving microphone, and much 
effort has been spent on developing efficient averaging pro-
cedures [1, 2]. The idea of measuring the total energy den-
sity rather than the potential energy density on the assump-
tion that the former quantity varies less with the position 
than the latter goes back to the 1930s [3] and has occasion-
ally been discussed in the literature [4]. In the late 1970s 
the phenomenon was analysed using a stochastic interfer-
ence model of a diffuse sound field [5], and in the late 
1980s the matter was examined experimentally for the first 
time [6]. However, until recently measurement of the total 
sound energy density has required an elaborate arrangement 
based on finite difference approximations using at least four 
pressure microphones [6-9]. The four (or six) microphones 
should be amplitude and phase matched very well, and the 
signal-to-noise ratio is poor because the finite difference 
signals should be time integrated [10]; therefore the method 
has never been much used in practice. However, with the 
advent of a three-dimensional particle velocity transducer, 
‘Microflown’ [11], it has become somewhat easier to meas-
ure total rather than only potential energy density in a 
sound field, as demonstrated by a recent investigation [12]. 
This paper examines the spatial variation of potential, ki-
netic and total sound energy density in enclosures theoreti-
cally and experimentally. 

2 The spatial statistics of potential, 
kinetic and total energy density 

2.1 Above the Schroeder frequency 

At frequencies above the Schroeder frequency [13] the 
problem seems to have been solved. On the basis on the 
following stochastic pure-tone diffuse-field interference 
model, originally developed by Waterhouse [14], 
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where the phase angles n  are uniformly distributed be-
tween 0 and 2 , the wavenumber vectors nk  are uniformly 

distributed over all angles of incidence (corresponding to a 
sinusoidal distribution of the polar angles) and the ampli-
tudes nA  have an arbitrary distribution, Jacobsen showed i) 
that the normalised spatial variance of the potential energy 
density ( 2

potw ) equals one (as shown earlier by Water-
house [14] and Lubman [15]); ii) that the three Cartesian 
mean square particle velocity components are statistically 
independent and also have a normalised spatial variance of 
one; iii) that the normalised spatial variance of the kinetic 
energy density is 1 3 ; and that the normalised spatial vari-
ance of the total energy density is also 1 3  [5]. If the room 
is driven with noise rather than a pure tone the spatial vari-
ances should be multiplied by a factor of 603 ln(10) / BT , 
where B is the bandwidth and T60 is the reverberation time. 
The effect of the finite bandwidth of the signal follows 
from expressions derived by Lubman [15] and Schroeder 
[16]. In short, measuring the total sound energy density at 
one position gives the same information as measuring the 
potential energy density at three statistically independent 
positions. 
These results have recently been confirmed by a numerical 
study [12], which also demonstrated larger spatial standard 
deviations of potential, kinetic and total energy density be-
low the Schroeder frequency.  
The diffuse-field model has also been used successfully for 
predicting spatial correlation functions [5, 17] and the spa-
tial statistics of active and reactive sound intensity [18]. 

2.2 Low frequencies; the modal approach 

Below the Schroeder frequency one would perhaps not ex-
pect the diffuse-field theory to be accurate. So far nobody 
has examined the spatial statistics of kinetic and total en-
ergy density in this frequency range, except in the extreme 
case where one single mode is dominating. For this case 
Cook and Schade found that the normalised spatial variance 
of the total energy density in an axial mode in a rectangular 
room is zero; that the corresponding variance compared 
with that of potential energy density in a tangential mode is 
reduced by a factor of up to five; and that the variance com-
pared with that of potential energy density is reduced by a 
factor of up to 19 6  (which is very close to three) in an 
oblique mode [4]. There is no equivalent to axial and tan-
gential modes in enclosures of a more complicated shape, 
and in practice the vanishing variance of total energy den-
sity in axial modes is not very important. All in all it does 
not seem unreasonable to expect the normalised spatial 
variance of the total energy density to be about one third of 
that of potential energy density in the general case, also at 
low frequencies. 
Many authors have examined the spatial variation of poten-
tial energy density in rectangular rooms below the Schroe-
der frequency. Employing a theoretical method that in-
volves replacing modal sums with integrals and assuming 
that the modal frequencies have a Poisson distribution (i.e., 
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are completely randomly distributed), Lyon derived the 
following expression for the normalised variance of the 
potential energy density in a rectangular reverberation room 
[19], 
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where 
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is the modal overlap (the product of the noise bandwidth of 
a mode and the modal density). Note that the normalised 
variance approaches one at high modal overlap, in agree-
ment with the diffuse-field theory. A similar but slightly 
different method was used by Jacobsen about ten years later 
[20], but whereas Lyon in effect studied the ensemble sta-
tistics, Jacobsen (following Bodlund [21]) distinguished 
between the spatial variance and the room variance. The 
former can be observed when a microphone is moved about 
in a given room; the latter is associated with an ensemble of 
rooms. A few years later Davy derived a more general ver-
sion of Lyon’s expression in the form of the variance of a 
transmission function [22].  
One problem with the approach used by these authors is 
that the results are fairly sensitive to the assumed distribu-
tion of modal frequencies; therefore both Lyon and Davy 
also examined the ‘nearest neighbour distribution’, which is 
supposed to reflect the observation that the modal frequen-
cies seem to tend to repel each other, rather than being sta-
tistically independent, i.e., Poisson distributed. This phe-
nomenon, which means that the distribution of the modal 
frequencies is closer to the average density that one would 
have thought, is sometimes referred to as the ‘spectral rigid-
ity’ [23]; and at present it seems to be generally accepted 
that the modal frequencies have a Gaussian orthogonal en-
semble distribution [23-26]. This distribution does not have 
an elementary function representation, but it can be ap-
proximated by the Rayleigh distribution [24]. Under the 
assumption that the modal frequencies have a Gaussian 
orthogonal ensemble distribution Lyon’s expression for the 
normalised variance of potential energy density (Eq. (2)) 
should be modified [24, 27] to 
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There is an interesting coupling between the statistics of 
energy density and the statistics of the sound power emitted 
by the source that generates the sound field. In sound power 
measurements in reverberation rooms one usually combines 
averaging over source positions and receiver positions, and 
reciprocity considerations lead to the conclusion that, say, 
the combination of N source positions and L receiver posi-
tions must result in the same uncertainty as L source posi-
tions and N receiver positions. Davy’s expression satisfies 
this relation [22, 24, 27]. 
If the modal frequencies have a Gaussian orthogonal en-
semble distribution the normalised spatial variance of the 
sound power emitted by a monopole in a rectangular room 
is, according to Davy [26], 
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2.3 Low frequencies; the diffuse-field ap-
proach

The normalised variance of the sound power emitted by a 
pure-tone monopole moved about in a reverberant sound 
field has also been estimated with the diffuse-field ap-
proach based on Eq. (1) [5, 28]. This approach is far and 
away simpler than the modal approach and does not involve 
any assumptions about the shape of the room or the distri-
bution of the modal frequencies. The result is  

 2
a

1
2

P
M

, (6) 

which is small (less than 0.1) above the Schroeder fre-
quency, but important at low frequencies. The reciprocity 
considerations mentioned in Sect. 2.2 now lead to the con-
clusion that the normalised spatial variance of the mean 
square pressure at low frequencies will be increased by the 
source position variance, that is, 

 2
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The explanation is that the amplitudes nA  in Eq. (1) depend 
on the sound power emitted by the source. Note the strong 
similarities between Eqs. (4) and (7) (and between Eqs. (5) 
and (6)). It follows that if the diffuse-field model is applied 
below the Schroeder frequency then, to first order, one can 
expect an increase of the normalised spatial variance of 
potential energy density of the order of 1 2M . The corre-
sponding normalised variance of the total energy density 
can be expected to be three times less, 

 2
tot

11 3
2

w
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. (8) 

For noise excitation one may expect Lubman’s and Schroe-
der’s expression to give a good approximation [15, 16], and 
thus Eqs. (7) and (8) to become 

 2
pot

60

1 11
2 1 3 ln(10)

w
M BT

 (9) 

and 

 2
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3 Experimental results 

To test the validity of the foregoing considerations some 
experiments have been carried out in a small reverberation 
chamber of about 2 m3 (a model (in scale 1:5) of DTU’s 
large reverberation rooms). In the frequency range of con-
cern the reverberation time of this chamber is about 1 s. 
The chamber was driven by a loudspeaker, and the mean 
square sound pressure and mean square particle velocity 
components in three perpendicular directions were meas-
ured at sixteen random positions using a Microflown 3D 
pressure-velocity sound intensity probe, ‘USP’ (calibrated 
as described in Ref. [29]), combined with a Brüel & Kjær 
‘PULSE’ analyser in the FFT mode. The loudspeaker was 
driven by synchronised pseudo-random noise, correspond-
ing to analysing the sound field with 6400 independent pure 
tones. The Schroeder frequency of the chamber was esti-
mated to be about 1.3 kHz. 
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Sixteen positions is not much for determining the variance 
of a random variable, and therefore the estimated spatial 
standard deviations vary significantly from frequency to 
frequency. However, when the normalised spatial standard 
deviations are averaged over frequency bands the fluctua-
tions are smoothed out. Figure 1 shows such band average 
values of the normalised spatial standard deviation of the 
rms value of the sound pressure and of the three Cartesian 
particle velocity components. According to the diffuse-field 
theory all these quantities have a Rayleigh distribution, the 
normalised standard deviation of which is 4  = 
0.52. This is in good agreement with the results above the 
Schroeder frequency. Below this frequency the standard 
deviation is slightly larger. 
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Fig. 1. Normalised spatial standard deviation of rms pres-
sure and particle velocity components for pure tones, aver-

aged over 100 Hz bands. 

Figure 2 shows similar band average values of the normal-
ised spatial standard deviation of potential, kinetic and total 
energy density compared with the predicted values (Eqs. (7) 
and (8)). Above the Schroeder frequency the results fluctu-
ate about the predicted values. Below the Schroeder fre-
quency the theory seems to overestimate the standard de-
viations. However, note that the modal theory (Eq. (4)) 
would overestimate even more (a factor of 2.9). It is cer-
tainly confirmed in the entire frequency range that kinetic 
and total energy density varies less with the position than 
potential energy density does. 
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Fig. 2. Normalised spatial standard deviation of potential, 
kinetic and total energy density for pure tones, averaged 

over 100 Hz bands. 

Figure 3 show the results of averaging the mean square 
values of the pressure and the three particle velocity com-
ponents in 100 Hz frequency bands. This corresponds to 
driving the chamber with noise and measuring the spatial 
standard deviations in such frequency bands. The measured 
spatial standard deviations are compared with the predicted 
values (Eqs. (9) and (10)). As can be seen there is reason-
able agreement with the theory.  
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Fig. 3. Normalised spatial standard deviation of potential, 
kinetic and total energy density in 100 Hz bands. 

Finally Fig. 4 shows the results of another kind of statistical 
analysis. In this case potential, kinetic and total energy den-
sity has been analysed statistically in 100 Hz wide bands 
along he frequency axis at one single position. Above the 
Schroeder frequency one should expect the same statistics 
with respect to frequency as with respect to position [30, 
31]; and this is confirmed. Below the Schroeder frequency 
this ergodicity is not self evident, but it seems to be con-
firmed. 
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Fig. 4. Normalised standard deviation of potential, kinetic 
and total energy density with respect to frequency at one 

single position, calculated in 100 Hz bands. 

4 Conclusions 

The diffuse-field theory can be extended to the frequency 
range below the Schroeder frequency, where it gives pre-
dictions that are similar to the predictions of the modal the-
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ory. The diffuse-field theory is far simpler than the modal 
theory and requires much less information; it is only neces-
sary to know the reverberation time of the room and its mo-
dal density. According to this theory it is three times more 
efficient to measure the total sound energy density in a re-
verberant sound field than to measure the potential sound 
energy density; and this is confirmed by experimental re-
sults.  
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