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Pattern-matching methods for polyphonic transcription of piano sounds require a set of patterns that
can be obtained by modeling the piano-sound spectra. The modeling should take into account not only
the string stiffness but also the effect of the soundboard impedance on the string vibration. Studies
on that effect corresponding to a wide range of impedance values have previously been carried out by
the authors. However, actual impedance values for real pianos must be used in the model. Although
the impedance value of a few grand-pianos have been measured by the authors, these results are not
significative enough to create a model. Thus, a FEM simulation of soundboard vibration is proposed
to obtain nearly-actual impedance values. The simulation considers several cases of vibrating plates
from the simplest rectangular one and increasing the similarity to real piano soundboards. The quality
of the simulation is verified comparing the obtained results with either recognized theoretical results
for the simplest cases or measured values for the more complex ones. The complexity of the simulated
soundboard is limited to the case that produces only slight variations in the modeled spectrum. This
work has been supported by Spanish National Project TEC2006-13067-C03- 01/TCM.

1 Introduction

The goal of this research is to improve the accuracy
of a synthesized piano spectrum. In our case, the aim
of the spectrum synthesis is to obtain a set of spectral
patterns to be utilized for a transcription system based
on a pattern-matching method.

Two basic vibrational aspects affect the piano note spec-
trum. First, the stiffness of the piano strings produces
every partial to be slightly above the harmonic frequency.
Second, the fact that one of the string ends is fixed to
a moving support (i.e., the bridge). The effect of the
string stiffness is taken into account by using the inhar-
monicity coefficient and the Fletcher’s equation [1].

fn = n f0
√

1 + n2B (1)

Where n is the partial order, f0 is the fundamental fre-
quency in the case of fixed elastic string and B is the
inharmonicity factor due to the string stiffness.

The moving support turns out to behave as a finite me-
chanical impedance with both real and imaginary parts.
The effect on the spectrum is a deviation of the fre-
quency respect to the expected value for the case of fixed
ends. This deviation might be positive or negative, lead-
ing to a higher or a lower frequency. This deviation is a
sort of inharmonicity and it can be called ’Soundboard
induced inharmonicity’.

Solving the vibration frequencies of a string with a me-
chanical impedance (with both real and imaginary parts)
at one end has been carried out by Morse [2] and by
Ortiz et al. [3][4]. Morse obtained an approximated ex-
pression and stated that it was correct only for small
deviations.
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Where n is the partial order, c is the propagation veloc-
ity, L is string length, ρL is density per length unit and
RSB and XSB are the real and imaginary part of the
soundboard impedance.

Ortiz et al. obtained the vibration frequencies by solving
numerically the equation of the modes for a string with
finite impedance at one end. The results were tabulated
as a function of both real and imaginary parts of the
soundboard impedance. Their results were very close
to those obtained by Morse’s equation even for larger

deviations. Unlike Morse, Ortiz et al. calculated their
results as a deviation value expressed in cents, therefore
any vibration frequency could be expressed as:

fn = 1200 log2

(
n · f0
27.5

)
+ ISB (n, f0, RSB , XSB) (3)

Where 27.5 Hz has been selected as a reference for the
cents-scale because it is the equal-tempered frequency
for the first piano note (i.e., A0).

This is a good way to express deviation in musical en-
vironment giving a better estimation of whether the de-
viation is of significance or not. Figure 1 shows the
deviation values obtained for the first partial of 28th
note.

Figure 1: ISB deviation calculated by Ortiz et al.[5] for
the first partial of 28-th note as a function of a range
of RSB and XSB values, represented by indexes. RSB

indexes correspond to a range linearly spaced from 100
to 1900 kg/s. XSB indexes correspond to a range

logarithmically spaced from 0 to 10+6.5 kg/s.

It turned out that the ISB deviation value for n-th par-
tial is n times the deviation value for the fundamental
if the impedance were the same at both frequencies.

The limitation of both methods is they calculate the so-
lutions for a flexible string rather than a stiff string. Au-
thors are currently using FEM methods to evaluate the
validity of those solutions when applied to stiff strings.

Despite of the method used to calculate the deviation
due to the soundboard impedance, a remaining problem
is to know the real value of that impedance.
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2 Measured soundboard impe-
dance

The obvious way to know the actual value of the sound-
board impedance is to measure it. Some of the already
published articles including soundboard impedance mea-
surements are those from Giordano [6], Berthaut[7] and
Suzuki [8]. But all of them lack from the fact that
present the modulus of impedance, but they do not sep-
arate the real and imaginary parts, which is necessary to
evaluate the frequency deviation due to that impedance.

In some case (e.g., Giordano) it is possible to derive a
range for the values of real and imaginary parts using
the also indicated phase of the impedance. The obtained
range of values is approximately: 200 to 2000 kg/s for
RSB and 0 to ±10000 for XSB [4].

In this section we present some of the values obtained by
measuring the impedance of a Yamaha C7 grand piano
(2.27m long).

The measures were carried out in a complete piano with-
out dismounting any piece. The impact measurement
method was utilized. The impact hammer, a B&K8202,
was connected to a charge-amplifier (B&K2635) to adapt
the accelerometer and amplify its signal. The resulting
vibration was measured with a Polytech laser vibrom-
eter at a point only a few millimeters away from the
excitation point (to prevent the hammer interrupting
the laser light). Figure 2 shows a photo of the main
used elements.

Both force and velocity signals were recorded synchro-
nously in a laptop using a 2-channel audio interface from
TASCAM. The audio interface and the audio processing
software were previously level-calibrated by introduc-
ing a test signal of known amplitude from a Hewlett-
Packard signal generator.

Figure 2: Photo showing the C7 piano with the B&K
impact-hammer and the Polytech laser-head utilized

during the measuring sessions.

Digitalization was done at 44.1 kHz and 16 bits for both
channels to preserve most information. Several impacts
were recorded for every excitation point. An audio edit-
ing software allowed to select every part of the record-
ing with both signals (force an velocity) available syn-
chronously. Data were read and calculations were done
to obtain mobility and impedance by using a software
application written by the authors using Matlab.

Figure 3 shows the measured values for the point of the

bass bridge corresponding to 24-th note. Values of RSB

range from slightly below 100 to about 4000. On the
other hand, XSB range mainly between ± 1000. Ve-
locity spectrum shows clearly the first modes. Table 3
includes these measured modes-frequencies along with
simulated ones.

Figure 3: Measurement results when exciting the point
of 24-th note in the bass bridge. The modulus and

phase of ZSB are shown in the left side. The
upper-right plot shows the velocity spectrum and its

peaks indicate the modes frequencies. The lower-right
plot shows both the real (always positive valued) and

imaginary parts of the measured impedance.

3 Modeling soundboards using
FEM

Simulating the vibration of plates has several benefits.
Mainly, it is possible to estimate the impedance for sev-
eral plate sizes and several excitation points without the
need of having several pianos and repeating the measur-
ing process many times.

However, it is important to be sure that the simulation
model is realistic enough. The present section shows the
results of FEM simulations for several kinds of plates
and how the more complete model leads to the more
realistic results. Trying to model a piano soundboard as
a simple plate is not realistic enough. It is necessary to
include in the FEM model, besides the piano irregular-
shape-orthotropic plate, the ribs and the bridges.

To verify whether the FEM model leads to good results,
these must be compared to the existing measures. The
first element to be verified to decide whether a simu-
lation is good enough, is the frequency values of the
vibration modes. These values must be coincident (or
at least nearly coincident) with the measured ones.

A recently published article by Mamou-Mani et al. [9]
shows that FEM modeling including the downbearing
force of the strings over the soundboard leads to a sig-
nificant modification of the vibration modes frequencies.
As far as downbearing has not been considered in our
FEM model, our results are allowed to be slightly dif-
ferent than the actual ones.

The simulated plates have been the following:

1. Rectangular orthotropic with the wood grain fol-
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lowing the piano longitudinal axis.

2. Rectangular orthotropic with the wood grain fol-
lowing its real direction (i.e., about 40 degrees
counterclockwise of the longitudinal piano axis).
Therefore, the plate in the FEM model was ro-
tated 40 degrees clockwise for the wood-grain axis
being coincident with FEM y-axis. The longitudi-
nal piano axis was not the y-axis anymore. Longi-
tudinal wood axis (i.e., wood-grain axis) was coin-
cident with FEM y-axis, which allowed the correct
orthotropic-material modeling in the used FEM
software.

3. Trapezoid shaped orthotropic plate. It was ob-
tained form the previous rectangular, performing
a cut in its right side and obtaining nearly the
Cristofori’s original pianoforte soundboard shape.

4. Current-piano shaped orthotropic plate.

5. Piano shaped orthotropic plate with hard-wood
ribs glued below the plate at a perpendicular di-
rection to the wood grain of the plate.

6. The previous but having added the two hard-wood
bridges on the upper face of the plate. These brid-
ges resembled the shape established in the Stein-
way’s patent for a overstrung pianoforte[10].

The FEM simulation has been carried out using the pro-
gram ANSYS. The mechanical parameters for the plate,
the ribs and the bridge have been obtained from the
Wood Handbook published by the U.S. Department of
Agriculture-Forest Products Laboratory [11]. Sizes for
ribs and bridge have been obtained from the Steinway’s
classic patent on the overstrung piano-forte [10]. Table
1 summarizes the values and figure 4 shows the physical
details of the models.

Regarding FEM elements, shell elements were used for
the simplest plates, whereas solid elements were used

Figure 4: The designed model of the soundboard with
ribs and bridges used in FEM calculations. The shapes

of soundboard and bridges follow the Steinway’s
patent.

Soundboard Ribs and Bridges

Et (GPa) 0.469

El (GPa) 10.9 E 12GPa

Er (GPa) 0.85

Gtl (GPa) 0.665

Glr (GPa) 0.698

Gtr (GPa) 0.033

σtl 0.025

σlr 0.372 σ 0.4

σtr 0.245

ρ (kg/m3) 450 ρ 500kg/m3

Table 1: Wood parameters used in FEM simulation
[11]. E is Modulus of Elasticity, G is Modulus of

Rigidity, σ is Poisson’s ratio and ρ is density. Sitka
Spruce soundboard has been considered orthotropic

and values for longitudinal, tangential and radial axis
of wood are given. Hard-wood ribs and bridges have

been considered isotropic to reduce complexity.

for the more detailed. A simple test proved that for a
1cm thick rectangular plate, mode frequencies were the
same despite the element used. Due to software con-
strains, shell elements could not be used when mesh-
ing non-rectangular plates. Figure 4 shows the designed
soundboard utilized for FEM calculations.

Regarding boundary conditions, in a piano, the sound-
board is fitted into the rim gluing its perimeter, thus all
the soundboard surfaces in contact with the rim are not
allowed to move. In figure 5 showing the displacement
of the plates it can be seen that all their edges are nodes
presenting no vibration at all.

The soundboard modeled in ANSYS has been rotated in
order to make both the wood-longitudinal and graphical-
y axis coincident.

3.1 Vibration modes

The first parameter under study has been the modes
and their frequencies. Table 2 summarizes the obtained
values for the seven modeled plates. It can be seen that
all of the cases presented different values of frequencies,
even though in some cases they were similar. Only the
last two plates showed a somehow realistic value for the
first mode of a piano soundboard. Therefore, it should
be considered that simpler plate models are not ade-
quate for soundboard impedance estimation.

Another interesting difference was that obtained modes
did not appear in the same order for all plates. Modes
can be referred to by using two dimensional indexing
(i.e., Mi,j), where i and j indicates the number of peaks
and valleys in the transversal and longitudinal piano-
axis. If modes are ordered by increasing frequency, some
of them do not appear in the same order (see fig 5,
the 5th and 8th modes). Moreover, it was difficult to
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Figure 5: Modes 1st, 5th and 8th of three types of
plates. Left, rectangular orthotropic. Center, trapezoid

shaped orthotropic. Right, piano shaped orthotropic
with ribs and bridges. Plots are not equally scaled. All
of them show motionless edges, which corresponds to

boundary conditions.

identify Mi,j modes in the trapezoid and piano shaped
plates, because mode-shapes were not regular (see fig 5
the 5th mode of the third column).

It turns to be clear that almost every mechanical prop-
erty or detail of the modeled plate affects the obtained
vibration modes. The size, the shape, the wood-grain
orientation respect to the piano keyboard axis, the ribs
(including number, size and material) and the bridges.

Only the more complete model leads to a realistic FEM
simulation as it is analyzed in the following subsection.

1 2 3 4 5 6

1 22.7 25.1 23.1 25.0 58.4 96.4

2 28.3 29.7 41.2 38.8 81.8 141.5

3 39.1 38.8 49.5 53.3 115.6 204.3

4 55.4 52.8 63.2 60.3 144.5 249.7

5 59.9 67.0 76.7 75.3 163.2 289.3

6 64.8 71.2 84.9 82.4 181.0 311.1

7 73.9 71.6 90.8 92.3 208.6 353.9

8 76.8 78.9 105.7 103.6 225.4 406.5

9 88.1 91.0 118.6 108.6 254.4 430.7

10 103.2 95.1 123.2 121.8 277.2 488.2

Table 2: Frequencies of the first ten modes obtained by
FEM calculation for the six simulated plates. The

change of shape and direction of wood grain modified
the frequency of some modes. However, including ribs
and even bridges modified a lot the modes frequencies.

Only the last two plates showed a realistic value for
the first mode of a piano soundboard.

4 Simulation compared to mea-
sures

If only the mode frequencies have to be compared, table
3 shows the simulated values and the measured ones.

It is clear that only the more complete FEM model ap-
proaches the measured values. It must be notice that the
size of the modeled soundboard was a little longer than
the size of the measured Yamaha C7 piano. The model
was 1.75x1.46 whereas the real piano was 1.55x1.46.
This can explain the fact that all the measured values
are somehow above the simulated ones, specially those
modes more related to the longitudinal size. It also has
to be taken into consideration the effect of down-bearing
as it was discussed previously.

A more complete analysis requires to make use of the
mobility or its inverse, the impedance. FEM simula-
tion requires taking into consideration a damping factor
in order to obtain realistic mobility curves. The articles
from Chaigne [12] and Lambourg [13] present a study on
damping plates, including Spruce wood plates (aimed to
guitar soundboards). Their results show an increasing
decay factor with frequency, which is consistent with the
fact that bass notes are longer than treble ones. In our
case, measurements indicate that resistive part of sound-
board impedance, which is related to decay factor, also
increases with frequency. Furthermore, velocity spec-
trum (see fig 3) of the first modes present nearly equal
bandwidth, which leads to Q increasing with frequency.
Thus, damping ratio decreases with frequency. The last
means that FEM modeling using ANSYS requires the
use of the named α-damping.

Obtaining a simulated results nearly equal as a mea-
sured value is difficult. Figure 6 shows the simulated
velocity when exciting a point in the bass-bridge corre-
sponding to about 24-th note. In this result, the plate
has been considered undamped, thus the peaks are nar-
row. It can be seen that the envelope or levels distribu-
tion is similar to the measured one (see also figure 3 to
compare).

Measured 3 4 5 6

1 115 23.1 25.0 58.4 96.4

2 165 41.2 38.8 81.8 141.5

3 215 49.5 53.3 115.6 204.3

4 265 63.2 60.3 144.5 249.7

5 298 76.7 75.3 163.2 289.3

6 338 84.9 82.4 181.0 311.1

7 382 90.8 92.3 208.6 353.9

8 445 105.7 103.6 225.4 406.5

9 490 118.6 108.6 254.4 430.7

10 540 123.2 121.8 277.2 488.2

Table 3: Mode frequencies (Hz): simulated and
measured ones
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For a more detailed simulation, the selected α-damping
coefficient was 20 and the spectral resolution was forced
to 6 Hz (as in the case of measured values). Only the
first ten modes have been used for calculations in the
range 20-600 Hz. Results are shown in figure 7. They
exhibit a certain resemblance of the measures.

Figure 6: Velocity simulated at about 24-th note point,
considering an undamped piano plate. The

distribution of levels is similar to the measured ones.

Figure 7: The complete simulation results. A perfect
resemblance of the measures is impossible, but the

similarity is good enough. Impedance measures
includes the effect of the strings impedances, which

produce ’small irregularities’ in the measured curves.
Velocity curve is also the mobility curve because

simulation was carried out by exciting the point with a
frequency-sweeping-unity-amplitude sinusoidal force.

5 Conclusions

Simulation using FEM allows to estimate the values of
both the real and imaginary parts of the soundboard
impedance. Even though this estimation is not perfect,
it permits to know the range of possible values, which
is enough to evaluate the range of likely deviation due
to ISB . The best estimation requires the use of a very
detailed model of the soundboard, not being the plate
alone enough. Considering ribs and bridges is necessary
to obtain a good enough approximation to real modes,
what is the first step to a good impedance estimation.
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