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The aim of this study is to characterize the structural noise in order to better detect flaws in several 
heterogeneous materials (steels, welding, composites …) using ultrasonic waves. For this purpose, a continuous 
wavelet transform is applied to ultrasonic Ascan signals acquired using an ultrasonic Non Destructive Testing 
(NDT) device. The time-scale representation provided, which highlights the temporal evolution of the spectral 
content of the Ascan signals, is relevant but can lead to misinterpretation. The problem is to identify if each 
pattern from the wavelet representation is due to the structural noise or a flaw. To solve it, a detection technique 
based on statistical significance testing in the time-scale plane is used. Typical structural noise signals are then 
described using an autoregressive model which seems relevant according to the spectral content of the signals. 
The approach is tested on experimental signals, obtained by ultrasonic NDT of metallic materials (austenitic 
stainless steel) then of a welding in this steel and indeed enables to separate various components from the signal 
that is two kinds of structural noise and flaw echoes.  

1 Introduction

The Austenitic Stainless Steels (ASS) are used in various 
applications, in particular in the parts of the primary circuit 
of the nuclear reactors. Among the methods used for the 
characterization of the ASS damage, the Non Destructive 
Testing (NDT) is proved to be effective to detect various 
types of defects, whose presence is likely to imperil 
industrial installation functioning. The ultrasonic inspection 
is the best NDT method applied to the Austenitic Stainless 
Steels. The ultrasonic waves generated in this material 
propagate in two different ways: coherent and incoherent 
waves. The incoherent waves are called structural noise, 
due to the phenomenon of diffusion inside the material. 
Thus their presence can mask the acoustic signature of the 
sought damage. Ultrasonic NDT of the Austenitic Stainless 
Steels are of interest for both theoretical and experimental 
aspects. Many studies have been interested in the structural 
noise, particularly for characterizing signals resulting from 
stainless steel material [1, 2], defect detection [3, 4] and 
noise reduction [5, 6]. 
In this contribution a new approach is presented which 
consists in characterizing the structural noise in austenitic 
stainless steel, where flaws, welding and other different 
echoes are present. This is carried out by using both 
Continuous Wavelet Transform (CWT) and hypothesis 
testing in order to differentiate structural noise from other 
echoes in the ultrasonic signal. The CWT gives a time-scale 
or a time-frequency representation which may be difficult 
to interpret. The aim of this study is to provide some 
quantitative interpretations of each pattern (amplitudes of 
the time-scale representation) in order to know if these 
patterns correspond to structural noise or flaws. Thus 
hypothesis testing requires structural noise characterization. 
The basis of this approach is the computation of the Power 
Spectral Density (PSD) of the ultrasonic signal revealing a 
structural noise that can be done from an autoregressive 
model. 
This study is inspired by geophysical research [7, 8], which 
shows this approach is well adapted to separate various the 
signatures in the time-frequency plane. Our goal is to 
separate the signature of structural noise from the others 
signatures such as flaws. In the paper, we describe wavelet 
analysis, because it is an essential signal processing tool for 
the study, the material studied, i.e. austenitic stainless steel 
and the approach used which consists in characterizing the 
structural noise and detecting the flaws in these material. 
Some results are then reported. 

2 Continuous Wavelet Transform 

The wavelet transform can measure the time’s evolution of 
the spectral contents of a signal. The continuous wavelet 
transform CWT is defined for a signal ( )x t  [9] by: 

 

1( , ) ( ) *( )x
tW s x t dt

ss
, (1) 

* conjugate function. 
The CWT enables to measure the interaction of the signal 

( )x t  with a function which is called the analyzing wavelet 
considered for a scale s in the neighbourhood of the time . 
This analyzing wavelet , ( )s t such that: 

,
1( ) ( )s

tt
ss

,   (2) 

results by dilation or compression with the parameter s and 
translation with the parameter  of a mother wavelet ( )t . 
The use of several scales through the wavelet transform 
enables to obtain a time-scale representation where the 
components of the signal will be split up into various scales 
during time. One can note that the scales are inversely 
proportional to the frequencies present in the signal and 
then it is easy to go from a time-scale representation to a 
time-frequency plane. Very often, the representation used is 
the wavelet power spectrum (energetic representation) 
defined as the square of the modulus of the wavelet 

coefficients [10]
2( , )xW s . 

3 Materials

The approach is tested on experimental signals obtained by 
an ultrasonic scan of metallic materials: a rolled austenitic 
stainless steel, then a welding in this steel. 
This material is tested using a transversal wave with a 60° 
angle of orientation. The transducer used for this control 
has a central frequency of 2 MHz. The signals are acquired 
with a sampling rate of 50 MHz. For this test, 643 Ascan 
are recorded. Fig.1 shows the Bscan image obtained from 
this material, along two axes: axis z represents space (the 
depth of the material) and axis y represents a set of Ascan 
signals collected step by step over the width of the material. 
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In this image, four areas are distinguishable, area 1 
represents echoes of rebounds due to the mounting–block 
of the transducer, area 2 represents structural noise in the 
base metal, area 3 represents a strong raising noise and area 
4 represents echoes of defects. 

 
Fig.1 Bscan image of the austenitic stainless steel. 

Two Ascan signals n°440 (Fig.2) and n°597 (Fig.3) are 
extracted. The first signal is without any defect and the 
second one crosses two defects (area 4). Both signals are 
corrupted by the same structural noise (area 2). The second 
part of the signals (at the bottom of the Bscan image) 
highlights a more energetic structural noise (area 3) than the 
first part as shown in Fig.1. A rebound echo can be 
observed (area 1) due to the mounting-block of the 
transducer at the early beginning of the scan. 
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Fig.2 Ultrasonic signal Ascan 440. 
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Fig.3 Ultrasonic signal Ascan 597. 

4 METHOD

The first step of the study is the representation in a time-
scale plane (Fig 4) of the wavelet power spectrum of an 
Ascan signal. Then the aim is to provide quantitative 

information to make easier the interpretation of each pattern 
(composed of several high coefficients of the wavelet 

power spectrum
2( , )xW s ) to know if these patterns 

correspond to the structural noise or to some flaws. For this 
purpose hypothesis testing is carried out based on two 
formulations: 

The pattern corresponds to the structural noise  

The pattern indicates something else such as for 
example the signature of a flaw.  

Thus the hypothesis testing requires to characterize the 
structural noise. The basis of this approach is to compute 
the Power Spectral Density (PSD) of some ultrasonic 
signals revealing a structural noise, using an autoregressive 
model.

 

Fig.4 Wavelet power spectrum in dB of Ascan 440. 

4.1 Autoregressive modeling 

By autoregressive modeling, it is possible to synthesize a 
signal whose statistical properties (particularly the 
autocorrelation function) matches those of a sample of the 
structural noise. It consists in filtering a white noise of 
variance 2 , with an autoregressive filter composed of p  

coefficients ia ( 1...i p ). The coefficients of the filter as 
well as the variance of the white noise are obtained by 
resolving the system of equations of Yule-Walker [12]. The 
synthesized signal ky is written then at time k :  

1

p

k k i k i
i

y u a y ,   (3)  

where ku  is the white noise of variance 2 . One of the 
major interests of this model is that the power spectrum 
density (PSD) of the autoregressive signal (AR) is written 
in an analytical way:  

2

2
2

1

( )

1 e

y p
j if T

i
i

S f

a e

,  (4) 
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eT indicates the sampling rate of the signals. Thus this PSD 
highlights the frequency content of the structural noise 
modeled. The major difficulty of autoregressive modeling 
is the choice of the order p, which can be set arbitrarily. 
However, there are criteria ( )J p  (Final Prediction Error 
and Akaike's Information Criterion), to estimate the number 
of parameters p [12]. 

Final Prediction Error:  

2( ) ( ) p
N pJ p FPE p
N p

.  (5) 

Akaike's Information Criterion: 

  2( ) ( ) 2 log pJ p AIC p p N , (6) 

N  is the number of samples of the signal and 2
p  is the 

white noise variance of a model of order p . The estimated 
order p of the model corresponds generally to the minimal 
value of the criteria: 

( )
p

p Arg Min J p   (7) 

4.2 Hypothesis testing 

Hypothesis testing is introduced to determine whether a 
pattern of the time-scale plane corresponds or not to some 
structural noise. It has been reminded in [7] that when the 
amplitudes of a temporal signal are distributed according to 
a Gaussian probability density function (PDF), then the 
square of the spectrum modulus follows a chi-squared 2

2  
PDF with two degrees of freedom. In addition, Torrence 
and Compo explain that if a time series can be modeled as 
an autoregressive process, each vertical slice of its wavelet 
power spectrum has the frequency content described in 
eq.(4). Consequently, the wavelet power spectrum of the 
signal follows for each scale a chi-squared PDF such as 
[7,8]: 

2
2

2

~

2
1

),(

s

x

P

sW
,   (8) 

sP  corresponds to the spectral content of the signal for the 
frequency kfe/N, associated with the scale s. fe indicates the 
sampling rate. According to eq.(4): 

2

2
2 /

1

( / )

1
s e p

j i k N
i

i

P S k f N

a e

. (9) 

It is then possible to define a confidence interval (95% for 
example) for which the wavelet power spectrum is 
distributed according to a chi-squared PDF with two 
degrees of freedom. Thus the values of the time-scale plane 
outside the interval indicate the presence of defects. The 
decision rule depends on the value:  

2( , )
( , ) 1

2

x

s

W s
G s

P
,            (10) 

with: 
2( , )

Prob( )1
2

x

s

W s

P
,           (11) 

and  the threshold corresponding to 0.05 . 

Two hypotheses are considered: 
- 0H : the signal is part of the structural noise if 

( , ) 1G s   

- 1H : the signal is a defect if ( , ) 1G s  

These decisions are made in any point of the time-scale 
plane with a confidence interval1 . 

5 EXPERIMENTS AND RESULTS 

5.1 Autoregressive modeling of the 
structural noise

The signal chosen for autoregressive modeling (Fig.5) is 
extracted from the image Bscan (Fig.1) corresponding to 
the area 2. This signal is distributed normally, which is 
checked by the test of Shapiro and Wilk [13]. The order of 
the model is estimated by the Akaike’s criteria. The 
minimum of the two functions FPE eq.(5) and AIC eq.(6) 
are obtained for the order p =53 (Fig.6).  
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Fig.5 Structural noise signal.  
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Fig.6 Akaike’s criteria for the choice of the autoregressive 
model order. 

Fig.7 illustrates the autocorrelation functions of the 
structural noise and the AR signal of order 53. Fig.8 
illustrates the theoretical Power Spectrum Density obtained 
by eq.(9), and the PSD of both signals, autoregressive (AR) 
of order 53 and structural noise, computed by means of 
Welch periodograms.  
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Fig.7 Autocorrelations of the structural noise signal (blue) 

and the AR signal of order 53 (red). 
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Fig.8 DSP (dB) of the structural noise signal (blue), the AR 

signal of order 53 (cyan) and theoretical (red). 

From the comparisons of the temporal properties (Fig.7) 
and the frequency content (Fig.8) of the structural noise 
signal and the AR signal, the autoregressive model for the 
structural noise seems relevant. 

5.2 Time –scale plan study 

In this study the Morlet wavelet is used [9]. The wavelet 
power spectrum of the signal Ascan 440 (Fig.2) is 
presented in Fig.9. The result related to the signal Ascan 
597 (Fig.3) is given in Fig.10. 
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Fig.9 Wavelet power spectrum of Ascan 440.
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Fig.10 Wavelet power spectrum of Ascan 597. 

The contours in Fig.9 and Fig.10 correspond to the values 
of ( , )G s  eq.(10) higher than 1. According to the 
hypothesis testing described in paragraph 4.2, these 
contours indicate the areas where the signal cannot be 
considered as structural noise with a confidence interval of 
95%. Indeed Fig.9 shows clearly the echoes due to high 
level noise and the echoes of rebound. Fig.10 also shows 
the echo of rebound and the echoes of defect. 

6 CONCLUSION 

Through the results obtained and their analyze, the 
approach implemented, based on modeling the structural 
noise and hypothesis testing in the time-scale (or time-
frequency) plane, seems of great interest. Indeed, the 
method leads to differentiate the various echoes from the 
structural noise in an ultrasonic signal Ascan. We also 
showed how the structural noise could be modeled using an 
autoregressive model. A similar study could be applied to 
other materials with strong structural noise such as the 
centrifuged cast steels and the concretes. This approach 
could be used to consider the height of the plane defects 
emerging, which is based on the difference of time of flight 
between echoes of diffraction and echoes of corner, the 
echoes of diffraction being often drowned in the structural 
noise in particular for the centrifuged cast steels. 
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