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Pelvoux, 91 020 Evry Cedex, France

cLaboratoire Central des Ponts et Chaussées, BP 4129, 44341 Bouguenais Cedex, France
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Abstract :
Tires are made of viscoelastic materials with stiffness quite dependent on the frequency. Generally,
two causes of the stiffness increase are distinguished: a frequency dependence complex modulus and a
geometrical stiffness. In this paper, an experimental and theoretical study on the relaxation and frequency
dependence of complex moduli of the tire constitutive materials are presented and validated. Expressions
of the viscoelastic behavior are presented in time and frequency domains. The results show that the real
part of the Young’s modulus is monotonic according to the frequency. It contributes to an important
part of the stiffening.
A numerical approach simulating the experimental results of the contact area of Cesbron is also
presented. The tire is modeled with a real material distribution in the tire section. The geometrical
stiffness also increases with the rotational velocity and it varies with the vibration frequencies. Static
and dynamic computations for different rolling velocities are done. The results show that the contact
area depends on the velocity of the rolling tire. Comparisons between the measurements and the
computations show a good agrement and a decrease of about 20 % in the contact areas when the tire
rolls compared to a static tire. This difference can be explained by the viscoelastic properties of the
materials.
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1 Introduction

The understanding of the tire behaviour during the rolling
and of the tire noise production mechanisms are still ma-
jor challenges in the field of car design. A correct mod-
elling of these mechanisms requires a deep knowledge of
parameters affecting the tire-road contact, in particular
the contact area. In detail, it has been proven exper-
imentally [1] that the contact area depends on several
factors, like the tire geometry, the asperities of the road,
the rolling velocity and the material distribution in the
tire section.

In this paper, two factors affecting the tire-road con-
tact area are analyzed: (i) the frequency dependence of
the material constitutive properties and (ii) the rolling
velocity.

The composite material constituting a tire is thought
as a homogenized material, having a visco-elastic be-
haviour. It is supposed here that the corresponding re-
laxation function has the form of a standard Prony’s se-
ries. In the first part of this article, the relaxation tests
are presented and discussed. In particular, the com-
plex modulus is derived from the relaxation function
accounting for the influence of the initial fast loading
phase preceding the true relaxation phase with constant
strain. By this procedure, it is possible to get a correct
expression of the complex modulus, removing the errors
associated to the usual formulas based on the assump-
tion that the constant strain of the relaxation test is
applied instantaneously. The analysis of the relaxation
test data obtained at the laboratory shows that the stor-
age modulus (i.e. the real part of the complex modu-
lus) at zero frequency is sensibly less than at frequencies
of some tenth of Hertz. The dynamic tests performed
with a hammer-sensor excitation-measurement system
confirm this behaviour. This increment of the storage
modulus for increasing frequencies shows that there is a
stiffening effect associated with the material under dy-
namic conditions.

An experimental campaign has been realized at the LCPC
(Laboratoire Central des Ponts et Chausses France), in
order to evaluate the influence of rolling velocity on

the tire-road contact area. For both static and rolling
conditions, the contact area has been measured for a
smooth/non-smooth tire on a smooth/non-smooth road.
In the static load case, the tire supports only the car
weight. In the other case, the contact area is calculated
from pressure measurements [1]. The results show that
the contact area has a tendency to converge toward an
asymptotic value for increasing rolling velocity (up to
50 km/h in the available test data).

To simulate this, the tire-road contact is modeled with
the finite element code ANSYS. The real geometry and
material distribution of the tire are implemented. Only
the case of smooth road is considered. First, a static
analysis is performed with the static material proper-
ties obtained from experimental measures and the corre-
sponding contact area is computed. Then, the rolling ef-
fect is taken into account into the tire finite element sim-
ulation. The constitutive material properties obtained
from the relaxation tests are implemented and the con-
tact area is evaluated also in this case and it proves to
be smaller than in the static case. We can conclude
that there is a good agreement between experimental
and numerical results.

2 Complex moduli identification

In principle, the viscoelastic behavior can be identified
by the relaxation tension test. The viscoelasticity is pre-
sented by the characteristic times. These times have an
important role in the dynamical domain. The Fourier
transform shows that the complex modulus at high fre-
quencies is mainly influenced by the smallest times. In
this section, it is assumed that the relaxation modulus
is expressed in a Prony’s series form in which the char-
acteristic times appear in the exponential term. Since
the initial time is not zero, an identification technique
with the non-zero time is presented. The real stress is
analytically expressed via the Prony’s series terms. The
coefficients respective to the exponential form are deter-
minated by Curve Fitting Toolbox in Matlab. Hence,
the relaxation modulus is specified.

The rubber takes a major part in the material distri-
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bution of the tire section. Though, the tread belt layer
supports the most of the static stresses occurring in the
tire. The Fig. 1 presents the constitutive materials in
the tire section and the tread belt macro layer which
is composed by two elementary layers with the parallel
wires and a rubber layer. In particular the mechanical
properties this layer are studied in the next part of this
paper.

Figure 1: Composition of a tire and of the tread belt
macro layer

2.1 Relaxation modulus and relaxation
stress

The relaxation stress can be expressed by a Stieltjes
integral [3, 2],:

σij(t) =
∫ t

0

Rijkl(t− τ)
∂εkl(τ)
∂τ

dτ +Rijkl(t)ε(0)

= Rijkl(0)ε(t) +
∫ t

0

∂Rijkl(τ)
∂τ

εkl(t− τ)dτ (1)

or by the tensor form:

σ(t) = R(t) ∗ Dε
Dτ

(2)

where R(t) is the relaxation modulus tensor of degree 4,
Dε

Dτ
is the distribution derivation (includes the disconti-

nuity in time). The relaxation function is presented by
the Prony’s series:

R(t) = A0 +
N∑

i=1

Aie
− t
τi (3)

In practice, an instantaneous strain can be not carried
out ε(t) = H(t)ε0 at the instant t = 0 (H(t) is the
Heaviside function). Thus, the strain is supposed to
reach the maximal value ε0 in the interval [0, t0] by a
linear variation of ε(t). This quantity is analytically
expressed (Fig. 2):

ε(t) = ε0

[
H(t− t0) +

t

t0
(H(t)−H(t− t0))

]
(4)

Figure 2: Real time relaxation strain and stress

The viscoelastic behaviour is established in two cases:

• 0 ≤ t < t0:

Assuming that in the interval [0, t0], the strain varies
linearly, ε(t) = t ε0

t0
, we obtain:

σ(t) =
ε0
t0

∫ t

0

R(t− τ)dτ =
ε0
t0

∫ t

0

R(τ)dτ (5)

• t0 ≤ t:

The derivative of the strain in the interval [t0, t] is can-
celled.

σ(t) =
∫ t

0

R(t− τ)
∂ε(τ)
∂τ

dτ =
ε0
t0

∫ t0

0

R(t− τ)dτ (6)

Hence, the relaxation stress is deduced in term of the
characteristic times and the associated magnitudes :

σ(t) =
ε0
t0

[
H(t− t0)

(
N∑

i=1

Aiτi

(
e
t0−t
τi − 1

)
−A0(t− t0)

)

−H(t)

(
N∑

i=1

Aiτi

(
e
−t
τi − 1

)
−A0t

)]
(7)

Knowing that the exponential function is a convex base,
the stress relaxation can be identified only where the
convexity is ensured. In this case, the studied time is
divided in two intervals: before and after the instant
t0. In each interval, the stress is convex but it is not
convex in the whole time. The free coefficient A0 is the
elastic modulus and the interval [t0, Tmax] is chosen for
the identification. The stress is depicted as below:

σ(t) =
ε0
t0

[
A0t0 +

N∑
i=1

Aiτie
− t
τi

(
e
t0
τi − 1

)]
(8)

The Curve Fitting Toolbox in Matlab is used to identify
the parameters. The fitting consists in minimizing the
error function, which is the difference between the mea-
sured and estimated values. The number of exponential
terms is chosen as small as possible. The value N is
increased until the best solution is found. Its is noted
that a bigger N does signify a better solution because
the minimization algorithm can conduct to a local min-
imum. Another control is to limit the elastic modulus
A0 to reach a good fit at the end of the curve.

The elementary layer is supposed to be composed of the
parallel wires and the rubber. The macro layer of the
tread belt is composed of two elementary layers and a
rubber layer at the middle (Fig. 1). The thickness of
each layer is 0.6mm. This macro layer supports the high-
est circumferential tension stress in the tire. However,
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it takes the role to keep a good contact road-tire and to
protect the tire. This layer is mainly studied.

The result of the modulus identification by the relax-
ation stress is presented in the Fig. 3 and in the Tab. 1
and 2.

Figure 3: Relaxation stress identification for the
moduli in the two main tire directions

A0 A1 A2 A3

Ex 356.5974 34.1506 59.7337 139.8615

Ey 9.9238 1.2488 6.0636 3.1896

Table 1: Term coefficients of tests in the two main
directions

t0 t1 t2 t3

Ex 1.2000 212.2070 7.3106 0.5625

Ey 1.2000 46.7811 4.2929 0.5652

Table 2: Initial and characteristic times of tests in the
two main directions

2.2 Complex modulus

The complex modulus depends on the frequency be-
cause of the viscoelasticity. In the same way, the re-
laxation modulus of the elementary layer is measured.
All the moduli tested can be expressed analytically in
the Prony’s series form. With a homogenization pro-
cess for a multi-layer composite, the apparent modulus

of the macro layer can be calculated from the data of
the elementary layers.

In the other way, the Fourier transform from the time
domain into the frequency domain gives us the analyt-
ical expression of the macro layer in term of the fre-
quency. Finally, the direct measurement of the complex
modulus by the beam vibration formula is used. The
FRF (Frequency Response Function) is measured by the
Bruel & Kjaer sensors. These signals are treated by the
software PulseLabShop. Analytically, the eigenfrequen-
cies are expressed as [4]:

fn =
(βnl)2

2πl2

√
EI

ρA
(9)

where βnl is the wave number on the beam length. In
the clamped-free case, it satisfies the equation:

cos(βnl) cosh(βnl) + 1 = 0 (10)

The measured eigenfrequencies give the real part of the
complex modulus. The damping ratio detected by Pulse-
LabShop gives the imaginary one. The calculated and
measured apparent moduli are showed in the Figs. 4
and 5.

Figure 4: Circumferential apparent modulus
comparison of the macro layer exploited from the
relaxation data, calculated by the homogenization

process and in several beam lengths

Figure 5: Transverse apparent modulus comparison of
the macro layer exploited from the relaxation data and

calculated by the homogenization process

3 Tire-road contact area test

The contact test has been realized by Cesbron. This
author did an experimental and numerical study on the
multi-asperity contact. However, in this paper, only the
contact test results of the smooth tire with a plane foun-
dation is used to compare with the numerical one.
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3.1 Contact measurement method

The area and the contact pressure can be measured with
the help of the sensors disposed at the interface of two
solids. There are two sensors categories: the film which
is sensible to the contact pressure post-processed by an
image treatment and the real time pressure acquisition
cells. With the rolling tire case, the pressure is measured
by the Tekscan 3150 cells . The description of this equip-
ment is shown in the Fig. 6. The measurement is real-
ized on a real vehicle (Renault Scenic, 2.0L/16V). This
vehicle is equipped of two standard front tires and two
smooth back tires. These two smooth tires are competi-
tion tires. The contact pressure on the right back tire is
measured. The other tires are placed at the same level
to ensure the identical forces on four tires. The vehicle
body is elevated on the contact level and positioned with
precision to apply the tire load on the contact plate.

Figure 6: Experimental disposition of the contact test:
1.Test vehicle 2.Lifting bridge 3.Studied contact zone

4.Smooth tire 5.Tekscan sensor 6.Reference plate
7.Tekscan box [1]

According to the constructor, the stiffness of the used
competition tire is of the same order as the standard
ones. Finally, the pumping pressure is 0.22 MPa (2.2
bars) and this value is controlled before each test.

3.2 Test result

At a moment, each cell gives a contact pressure in term
of time. The real time pressure reconstruction of all the
cells gives us the contact pressure distribution of the
studied zone. The contact area is measured in several
cases of road asperity (Fig. 7). It is calculated by the
formula:

A = V

∫ t2

t1

L(t)dt (11)

where V is the vehicle velocity and L(t) is the contact
length measured at each instant, t1, t2 are the beginning
and final contact times.

The result is presented in the Fig. 8 and the Tab. 3.

4 Tire modeling and comparison
with the experiments

4.1 Geometry and load applied

In this paper, the tire modeling is realized with the
smooth tire. The section geometry is measured from a

Figure 7: Tested road surface [1]

Figure 8: Contact area in the static case and for the 3
different velocities considered [1]

real section. A revolution process generates the whole of
the model. The wheel is modeled as the fixed boundary
condition. The road is supposed smooth and modeled
by a plate. The contact is therefore between two smooth
surfaces. The model is presented in the Fig. 9.

Figure 9: Modeling of the road-tire contact in ANSYS

The applied force on the tire is replaced by the pressure
in the plate. The tested force is F = 3300N giving a
pressure

p =
F

a2
=

3300
0.42

= 20625N/m2 (12)

where a is the length size of the square plate. The tire is
fixed on the wheel. To stabilize the model, we fix some
nodes of the plate in the horizontal displacement. The
inner pressure is taken equal to 2.2 bars.

The finite element software ANSYS is used to solve this
problem. The rolling velocity is introduced by the ro-
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Road surface Static 30km/h 40km/h 50km/h

A’ 156 123 123 122

C 155 130 129 123

E1 164 128 124 125

E2 151 133 137 131

M2 151 134 131 136

L1 148 121 126 122

L2 160 122 122 121

Table 3: Evolution of contact area in term of the
velocity [1]

tating angular velocity Ω = V
Rtire

. First, we introduce
the static moduli into the model to calculate the contact
area in the static case. The contact area includes the
zones where the pressure contact or the stress intensity
is considered as large enough.

4.2 Result and comparison

The result is saved in graphic form (Fig. 10). The
contact area is determinated by the connected elements
on the two contact sides (Fig. 12). The results show a
good agrement with the measurement.

Figure 10: Vertical static stress in the road-tire contact
problem

Figure 11: Stress intensity and calculated contact area

Figure 12: Road-tire contact areas calculated by
ANSYS

5 Conclusion

An identification technique of the relaxation stress is
presented in this paper. The analytical expressions of
the relaxation modulus are deduced. The Fourier trans-
form gives the dependence of complex moduli with the
frequency. An homogenization process is done to cal-
culate the apparent moduli of the macro layer. The vi-
bration test gives the equivalent dynamical moduli and
confirms the stiffening of the materials when the fre-
quency is increased.

A road-tire contact test is realized in the frame of the
Cesbron’s thesis [1]. The test shows that when the ve-
locity varies, the contact area varies too. However, there
is a coupling between the velocity dependence and the
dependence with the frequency of the complex modulus
and it is the cause of the variation of the contact area.

When the vehicle moves,the tire rotates and the mate-
rials work at different frequencies. As the rigidity of the
materials is quite different in rotation and in dynamics,
this explains the reduction in contact area as the tire
rolls.
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