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In this work, we study the sound propagation in a duct treated with a poroelastic liner exposed to a
sheared grazing flow. Acoustic propagation in the fluid domain and in the liner is respectively governed
by Galbrun’s equation and Biot’s model in the most general case.
In addition of using the complete Biot’s model, simplified models are also tested. Bulk reaction approach
that does not take into account solid phase elasticity and a model that neglects only the shear stress are
hence used. These two simplified models enable to evaluate the contributions of the compressional and
shear waves in the solid phase.
After some details on models and their numerical implementation, we shall illustrate these contributions
on a silencer benchmark.

1 Introduction

Over the years, considerable effort has been directed to-
ward the development of finite element models for pre-
dicting the propagation of sound waves in gas flow in
the presence of acoustically treated walls. The practical
applications of such work range from noise transmission
in vehicle exhaust systems, through ventilation and air
conditioning ducts, to the predicition of more complex
three-dimensional fields in aeroacoustical configurations.
In the early work dealing with the use of absorption fi-
nite elements, it was assumed that the liner was locally
reacting, thus eliminating the need to discretize the ab-
sorbing material explicitely. Later, to illustrate the ef-
fects of a finite size bulk reacting lining, Craggs [6] de-
rived a finite element model for porous materials where
the solid phase was assumed to be infinitely rigid so that
only compression waves are allowed to propagate and
the material can be characterized by a complex wave
number an a complex impedance. Until recently, most
of the studies related to sound attenuation through dis-
sipative silencers were carried out using this assumption
and curiously enough, no attempt was made to quantify
the effects of the finite stiffness of the absorbent ma-
terial. Furthermore, the mean flow which is present in
air moving ducts affects the upstream and downstream
attenuation and this is usually taken into account by
considering a uniformly moving flow in the central air-
way. This simplification of the flow field is made to ease
the numerical treatment of the wave equation, but it has
the drawback to neglect refraction in the boundary layer
which is inevitably present in the vicinity of the walls.
Because of these limitations, we think there is a need to
develop more advanced numerical techniques based on
the finite element methodology in order to incorporate
these effects.

In this work, we present and compare three different
finite element formulations to model the propagation in
the poroelastic liner. These are based on (i) Biot’s model
where two longitudinal and one transverse wave types
are present (ii) a simplified approach that neglects shear
stress (iii) a bulk reacting material model. The acoustic
propagation in the gas flow is written in terms of the La-
grangian displacement perturbation satisfying the Gal-
brun’s equation [10]. As shown in this paper, this has
the advantage of rendering the continuity conditions at
the porous material/ airway interface more explicit and
allows to define and easily compute the acoustic inten-
sity across the interfaces of the fluid domain. To illus-
trate the method, we compute the Transmission Loss
(TL) for typical dissipative silencers encountered in the
automotive industry. In some cases, we show that the
existence of multiple wave types in the porous material

can have significative consequences on the TL and that
the liner is very sensitive to the boundary conditions
that exist at its surface.

2 Formulation

2.1 Galbrun’s equation

Galbrun’s equation derives from general fluid mechanic
conservation equations, whereby the linearization pro-
cess is carried out with a lagrangian perturbation and in-
volves only lagrangian displacement perturbation. How-
ever, the direct resolution of harmonic Galbrun’s equa-
tion with the Finite Element Method (FEM) gives rise to
corrupted results. To overcome this difficulty, the mixed

FEM formulation has been introduced and extensively
discussed in previous works [18, 9].
Under the assumption of homentropic perturbations and
eulerian flow, the equation can be written in the fre-
quency domain (e−iωt) as follows :⎧⎪⎨

⎪⎩
− ρ0ω

2w − 2 iωρ0v0 · ∇w

+ ρ0v0 · ∇(v0 · ∇w) +∇pL = 0 ,

pL + ρ0c
2
0∇ ·w = 0 .

(1)

Here, subscripts “0 ”denotes the mean flow variables, pL

is the lagrangian acoustic pressure and w the lagrangian
displacement perturbation. The associated weak formu-
lation is

−

∫
Ωa

1

ρ0c2
0

pL∗pL dΩ +

∫
Ωa

∇pL∗ ·w dΩ +

∫
Ωa

w
∗ · ∇pL dΩ

−ω2

∫
Ωa

ρ0w
∗ ·w dΩ−

∫
Ωa

ρ0(v0 · ∇w
∗) · (v0 · ∇w) dΩ

−iω

∫
Ωa

ρ0w
∗ · (v0 · ∇w) dΩ + iω

∫
Ωa

ρ0(v0 · ∇w
∗) ·w dΩ

+

∫
∂Ωa

w
∗ ·

{
ρ0(v0 · na)

dw

dt

}
dS︸ ︷︷ ︸

I1

−

∫
∂Ωa

pL∗(w · na) dS

= 0 , ∀
{
w

∗, pL∗

}
, (2)

where pL∗, w∗ are the test functions and na denotes the
outward normal unit vector. The discretisation in the
three dimensional case has been carried out by Bériot
et al. [3]. Interpolation is linear for the pressure and a
bubble function is added for the displacement in order
to respect the inf-sup condition.

2.2 Biot’s equations

For isotropic porous materials, Biot’s model [4] is groun-
ded on the superposition of a fluid phase and a solid
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phase which are coupled together. The original equa-
tions set involves the fluid phase displacement U and
the solid phase displacement u. For the numerical im-
plementation, the equivalent Atalla’s mixed formulation
[2] will be used to simplify coupling conditions and to
save computation time. Indeed, for linear element, only
4 degrees of freedom (dof) per node are needed instead
of 6 in the (u,U) formulation. The Atalla’s mixed for-
mulation as presented in [2] is⎧⎨

⎩
∇ · σs(u) + ω2ρ u + γ ∇p = 0 ,

Δp + ω2 ρ22

R
p− ω2 ρ22

φ2
γ ∇ · u = 0 .

(3)

Here, p is the pressure in the fluid phase and u is the

solid phase displacement vector, γ = φ
(

ρ12

ρ22

− Q
R

)
and

ρ = ρ11 −
ρ2

12

ρ22

.
The associated weak formulation, considering the test
function p∗ and u∗, is∫

Ωp

σs(u) : ε(u∗) dΩ− ρ ω2

∫
Ωp

u · u∗ dΩ

+

∫
Ωp

[
φ2

ω2ρ̃22

∇p · ∇p∗ −
φ2

R
p p∗

]
dΩ

−

∫
Ωp

[
γ + φ

(
1 +

Q

R

)]
(∇p∗ · u +∇p · u∗) dΩ

−φ

(
1 +

Q

R

) ∫
Ωp

(p∗∇ · u + p∇ · u∗) dΩ

−

∫
∂Ωp

[
σt

n

]
· u∗ dS −

∫
∂Ωp

φ (Un − un) p∗ dS

= 0 , ∀ {p∗,u∗} , (4)

where, n denotes the outward normal unit vector to the
poroelastic domain and φ the porosity. A,N,P,Q,R are
Biot’s coefficients as defined in [4, 1]. A and N corre-
spond to the Lamé coefficients and P = A + 2N . R is
the bulk modulus of the fluid phase and Q indicates the
coupling of the two phases volumic dilatation. We can
note that the imaginary part of A and N includes the
structural damping and, in Q and R this part includes
the thermal dissipation. Those parameters are related
to the material properties given in Table 1 by the Allard
formulation [1].

2.3 Formulation without shear stress

Different simplifications can be brought to the previous
full Biot’s theory depending on the studied material elas-
tic characteristics. A simplification was hence proposed
by Chazot et al. in [5] to model light and non cohesive
porogranular materials. The basic idea of this model is
to modify the elastic law of the solid phase to suppress
shear stresses. The solid phase is then assumed to be-
have like a fluid. The resulting fluid-fluid model (FF) is{

[AΔps + ps] + BΔp = 0

[CΔp + p] + DΔps = 0 .
(5)

Here, ps is the equivalent pressure in the solid phase
while elastic coefficients A, B, C and D are

A = F (Pρ22 −Qρ12) , B = F (−Pρ12 + Qρ11) φ/(1− φ),

C = F (−Qρ12 + Rρ11) , D = F (Qρ22 −Rρ12) (1− φ)/φ,

F =
[(

ρ22ρ11 − ρ2
12

)
ω2

]
−1

. (6)

They are related to elastic and inertial coupling coef-
ficients. Q, R, φ, and ρij are unchanged compared to
those used in Biot’s formulation. However, two different
definitions can be employed for the elastic coefficient P .
If one considers a light and non cohesive granular mate-
rial without shear stress, the elastic coefficient P stands
for the skeleton bulk modulus with a coupling part due

to the fluid phase : P = Kb + (1−φ)2

φ Kf . On the con-
trary, when the aim is to neglect the shear stress in a
material with a large shear modulus N , it is also pos-
sible to keep the same coefficient P than the one used

in Biot’s formulation: P = 4
3N + Kb + (1−φ)2

φ Kf . This
enables to keep the same dispersion equation in both
formulations. Physically, in the first case, the energy
is totally distributed in the solid and fluid longitudi-
nal waves, while in the second case the energy part of
the solid shear wave is not re-distributed but simply
neglected. Of course, when N is very small, both defi-
nitions of P become identical. The second definition of
P is used here. The associated weak formulation for the
fluid fluid model is given here:

∫
Ωp

(−A∇ps · ∇p∗s + ps p∗s) dΩ +

∫
∂Ωp

A p∗s∇ps · n dS

−

∫
Ωp

(B∇p · ∇p∗s) dΩ +

∫
∂Ωp

B p∗s ∇p · n dS

+

∫
Ωp

(−C∇p · ∇p∗ + p p∗) dΩ +

∫
∂Ωp

C p∗∇p · n dS

−

∫
Ωp

(D∇ps · ∇p∗) dΩ +

∫
∂Ωp

D p∗∇ps · n dS

= 0, ∀ {p∗s , p∗} , (7)

where n denotes here the outward normal unit vector to
the poroelastic domain. The discretisation is done with
linear elements.

2.4 Bulk reacting modeling

An other classical simplification of Biot’s model is to
consider the skeleton as totally rigid [1, 13, 8, 17, 15].
The solid phase elasticity is then neglected, and only the
fluid phase is modeled. Viscous and thermal effect are
however still taken into account via an equivalent fluid
density ρe = ρ22/φ, and an equivalent acoustic celer-

ity ce = (Kf/ρe)
1/2

. Here, the same frequency depen-
dent expressions of Kf and ρ22 used in Biot’s model and
based on Allard’s formulation are employed in the bulk
material modeling (BM). Finally, the weak formulation
is standard and linear elements are used.

3 Matching of the acoustic-elastic

field

3.1 Continuity Conditions

Continuity conditions without flow are summarized by
Debergue et al. [7] for several configurations. Here, we
shall focus on a “direct” coupling, without impermeable
membrane or perforate sheet, but there is no hindrance
to implement them. Indeed, perforated sheet can be in-
cluded thanks to its impedance as a pressure jump and
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its implementation is straight forward because of the
mixed formulation.
The first condition, given by (8), stems from the stan-
dard continuity requirement of the normal stress at the
interface. Conditions (9,10), ensures the continuity of
the pressure and the continuity of the mass flux at the
interface. [

σt n
]

= −pL · n , (8)

p = pL , (9)

w · n = wn = φ(Un − un) + un . (10)

In the presence the flow, the classical cinematic condi-
tion is the continuity of the displacement and all the
dynamical conditions remain valid so the same set of
coupling condition can be use unambiguously.

3.2 Numerical implementation

3.2.1 Galbrun - Biot

Firstly, the I1 integral in (2) vanishes on Γ because there
is no flow in the liner, vectors v0 and na are orthogo-
nal. Both conditions (8) and (10) are directly substi-
tuted in boundary terms. But, as for Biot-Helmholtz
coupling, the second condition (9) can not be imposed
in the weak formulation. Some authors have resorted to
Lagrange multipliers or imposed directly the relation in
the system. Here, we introduce an additional functional∫

Γ

w∗n
(
pL − p

)
dΓ = 0, ∀ {w∗} , (11)

and w∗ plays the same role as a Lagrange multiplier but
avoids the additional dof. As this condition is added
directly in the formulation we could relax the constraint
in (9) and replace pL by p. Those two manipulations
give on Γ

∫
Γ

p · u∗

n dΓ +

∫
Γ

p∗ · un dΓ +

∫
Γ

pL · w∗

n dΓ +

∫
Γ

pL∗ · wn dΓ

−

∫
Γ

p∗ · wn dΓ−

∫
Γ

w∗

n · p dΓ = 0, ∀
{

p∗,u∗, pL∗,w∗

}
. (12)

The first line of (12) shows the pressure - displacement
coupling in each domain whereas the second gives pres-
sure - displacement coupling between the two domains.
It’s worth observing that this coupling produces a sym-
metric operator between lagrangian displacement w and
the fluid pressure in the porous.

3.2.2 Galbrun - FF model

Coupling conditions between acoustic and porous do-
mains are similar to coupling condition used in Biot’s
formulation, but taking into account the simplified FF
form of σt in (8), we have

pL = (1− φ) ps + φp . (13)

Solid and fluid porous displacements in the last coupling
condition can then be related to solid and fluid pressure
gradients

u = I∇ps + J ∇p , (14)

U = K∇ps + L∇p , (15)

with the intermediate coefficients I,J ,K and L given by

I = F (1− φ) ρ22 , J = −Fφρ12 ,

K = −F (1− φ) ρ12 , L = Fφρ11.
(16)

However, in order to avoid the calculation of pressure
gradients at boundary surfaces, Lagrange multipliers are
used instead of solid and fluid normal pressure gradients

λs = ∇ps · n , and λf = ∇p · n . (17)

The condition (10) can then be imposed directly in (2)
boundary term by replacing wn by (1− φ) (Iλs + Jλf )+
φ (Kλs + Lλf ). However, to impose the two conditions
(13,9), two additional functionals are introduced, using
Lagrange multipliers∫

Γ

λ∗s(p
L − ps) dS ,

∫
Γ

λ∗f (pL − pf ) dS . (18)

Finally, boundary terms with pressure gradients in (7)
are also written with Lagrange multipliers∫

Γ

(Ap∗s + Dp∗)λ1 + (Bp∗s + Cp∗)λ2 dS . (19)

3.2.3 Galbrun - Bulk reacting modeling

In the case of bulk reacting modeling, it remains only
the two coupling condition

p = pL (20)

wn = Un (21)

The second coupling condition (21) is imposed directly
in the porous boundary term by replacing Un by wn,
while the first one (20) is imposed with the additional
functional given in (11) as in the Galbrun-Biot case.
Finally, boundary and coupling terms writes

∫
Γ

pL∗wn dS +

∫
Γ

w∗

npL dS −

∫
Γ

wnp∗ dS −

∫
Γ

w∗

np dS = 0 .

(22)

4 Power balance

4.1 Intensity with shear flow

To characterize acoustical materials, the access to power
balance can be a useful design and comprehension tool.
Whereas linearized Euler’s equations are conservative
only for irrotational flow and isentropic flow [12] Gal-
brun’s equation can be written as an exact conservation
law for homentropic sheared flow. It’s worth noting that
the conservation law is not unique and we shall use here
the expression of intensity (23) given by Godin [11] and
Peyret et al. [16]

I = ρ0

(
∂w

∂t
·

dw

dt

)
v0 +

(
pL −w · ∇p0

) ∂w

∂t
. (23)

This equation describes the energy flux (i.e. intensity)
due to acoustical and hydrodynamical perturbation which
are coupled in the case of a shear flow.
This expression can be easily computed after the resolu-
tion. We should mention that with linear element used
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Figure 1: Geometry of the silencer benchmark
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Figure 2: Kirby validation case for M = 0 and
M = 0.15, . . . FEM, Kirby [14].

here intensity will be constant on each element, because
intensity involves gradient in the material derivative.
The power is deduced from flux of intensity across the
acoustic domain non-rigid boundary, the flux across Γo,
Γ, Γi gives respectively the transmitted power Pt, the
absorbed Pabs and the reflected power Pr, because Pi is
known. The TL is defined by

TL = 10 log

(
Pt

Pi

)
. (24)

4.2 Boundary conditions at duct ends

As the diameter of the inlet and the outlet is quite small,
far away from the discontinuity only the first mode is
propagative, this remark allows simple boundary condi-
tion. At the outlet Γo, the non reflective condition is
assured by the modal impedance of the first mode (ex-
pressed in term of the acoustic displacement) given by
the resolution of Pridmore-Brown equation as proposed
by Treyssède [18]. At the inlet Γi, the degrees of freedom
are expressed in terms of the incident and the reflected
mode amplitude and the linear system is rearranged to
set the amplitude of the incident wave.

4.3 Validation

A validation has been carried out for the configuration,
depicted on Fig. 1, proposed by Kirby [14] (r1 = 37 mm,
r2 = 76.6 mm, L = 315 mm) with a fibrous material (“E-
glass”) with the bulk reacting model and a very good
agreement can be seen on the Fig. 2. This model will
constitute our reference in the high frequency domain.

4.4 Numerical benchmark

A numerical study has been carried out for the Kirby’s
configuration for different kind of porous material listed

Properties Units XFM
φ [-] 0.98
σ [kNm−4s] 13.5

αinf [-] 1.7
Λ [μm] 80
Λ′ [μm] 160
ρ1 [kgm−3] 30
E [kPa] 540(1 - 0.05i)
ν [-] 0.35

Table 1: Materials properties used in numerical tests

in Table 1. For the XFM foam, the transmission loss
given Fig. 3 illustrates the influence of the skeleton. In-
deed the three models yield significant differences on the
results. Firstly, Biot’s model presents many resonance
peaks in both tested configurations (clamped and slid-

ing). In the sliding case, a good agreement can be seen
above 1500 Hz with the FF model in particular with a
excellent description of the 2000 Hz phenomenon prob-
ably due to a compressional wave effect. However, the
1300 Hz peak is absent with the FF model, that’s why we
are tempted to attribute it to shear effects but comple-
mentary tests are under investigation. The differences
between sliding and clamped cases are significant and
highlight the installation effects. It’s worth noting that
the FF model can not describe the clamped boundary
condition just as the bulk reacting modeling because the
shear stress is neglected. Finally, for this configuration
and this foam, the bulk reacting modeling is a too sim-
plified approach.In the presence of a sheared flow Fig. 4,
similar conclusions can be drawn, but resonance peaks
are less pronounced and shifted to the lower frequency
due to convection effect.
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T
L

(d
B

)

f (Hz)

Figure 3: Confrontation between the three models on
the XFM foam without flow : Biot sliding, FF,

BM, . . . Biot clamped.

5 Conclusion and prospects

These first results are engaging as they clearly show dif-
ferences between poroelastic models. They also allow
us to observe effects due to the presence of the mean
flow, boundary conditions of the porous material and
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Figure 4: Confrontation between the three models on
the XFM foam with sheared flow M(r) = 0.18:

Biot sliding, FF, BM, . . . Biot sliding
without flow.

the skeleton resonance. Neglecting shear may be in some
cases an interesting approach for saving computation
time and may offer a better description of phenomenon
than the standard bulk reaction model in some specific
muffler applications.
The finite element model presented in this work provides
an accurate numerical tool to identify compression and
shear wave effects. More work is going-on, in particular,
a more physics-based approach is being carried out in
order to find a good criterion to establish the FF model
application range.

References

[1] J.-F. Allard. Propagation of Sound in Porous Me-

dia: Modeling Sound Absorbing Materials. Chap-
man and Hall, 1993.

[2] N. Atalla, M. A. Hamdi, and R. Panneton. En-
hanced weak integral formulation for the mixed
(u, p) poroelastic equations. J. Acoust. Soc. Am.,
109(6):3065 – 3068, 2001.

[3] H. Bériot and M. Ben Tahar. A three dimensional
finite element model for sound propagation in non
potential mean flows. In Proceedings of ICSV13,
Vienna, Austria, July 2-6, 2006.

[4] M.A. Biot. Theory of propagation of elastic waves
in a fluid-saturated porous solid. i. low-frequency
range. J. Acoust. Soc. Am., 28(2):168–178, 1956.

[5] J. D. C. Chazot and J. L. G. Guyader. Characteri-
zation of light and non cohesive poro-granular ma-
terials with a fluid/fluid model. Acta Mech., 195(1-
4):227–247, 2008.

[6] A. Craggs. A finite element model for rigid porous
absorbing materials. J. Sound Vib., 61(1):101–101,
1978.

[7] P. Debergue, R. Panneton, and N. Atalla. Bound-
ary conditions for the weak formulation of the
mixed (u, p) poroelasticity problem. J. Acoust. Soc.

Am., 106(5):2393–2390, 1999.

[8] M.E. Delany and E.N. Bazley. Acoustical proper-
ties of fibrous asorbent materials. Appl. Acoust.,
3(2), April 1970.

[9] G. Gabard, F. Treyssède, and M. Ben Tahar. A
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[18] F. Treyssède, G. Gabard, and M. Ben Tahar. A
mixed finite element method for acoustic wave
propagation in moving fluids based on an eule-
rian lagrangian description. J. Acoust. Soc. Am.,
113(2):705–716, 2003.

Acoustics 08 Paris

6516


