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Production cars -as any industrial product- are subjecteded to various causes of variability including process 
uncertainties or product diversity. Many authors have shown that vibroacoustic problems sensitivity to small 
uncertainties increases dramatically with frequency and that only statistical approaches remain relevant in the 
high-frequency range. Moreover, modeling uncertainties due to numerous model simplifications induce similar 
dispersion effects on the computed responses. Both kind of uncertainties may be addressed when using a 
nonparametric stochastic modeling, based on the random matrix theory. Such a modeling appears to be very 
practicable for industrial vibroacoustic problems while relying on a strong mathematical background. In a 
first part, the application of the non-parametric modeling of uncertainties to vibroacoustic problems will be 
addressed. Stochastic aspects are controled by only 7 dispersion parameters that provide most of the dynamic 
behaviors that can experimentally be observed. A Monte-Carlo simulation is performed to provide converged 
statistics of the stochastic problem solution. In a second part, the dispersion parameters are identified so that 
the stochastic model fits experimental data. Frequency Response Functions of 20 production vehicles were 
measured for this purpose and compared to the computed results in the low frequency range (<200 Hz).

1 Introduction 

The NVH design of cars is nowadays mainly based on 
computational models that provide structural vibrations and 
internal acoustic levels simulations to be optimized toward 
customer needs and production costs. 
Considering the very high complexity of such a structural-
acoustic system, as well as the so-called dynamic 
hypersensitivity, some modeling errors - induced for 
instance by engineering simplifications - lead to significant 
prediction errors. The other way round, production cars, 
including their diversity and variability, exhibit a 
significant amount of dispersion.  In order to improve the 
robustness of the computational structural-acoustic model 
regarding production reality, both model and data 
uncertainties have to be taken into account. In this context, 
a non-parametric probabilistic approach of uncertainties is 
implemented in a conventional computational structural-
acoustic model. 
The aim of this paper is the assessment of the proposed 
stochastic modeling for automotive applications and the 
identification of the parameters controlling the amount of 
uncertainty. Relevant experiments have been developed on 
purpose, in order to constitute a significant experimental 
database including structural vibrations and internal cavity 
acoustic pressures. This database will later be used to 
proceed to the experimental identification of the parameters 
and to validate the computational model.  
Experimental results are presented first in order to focus on 
the application case. Then, the non-parametric stochastic 
modeling of vibroacoustic problems will be shortly 
addressed. Once the control parameters of the stochastic 
model are defined, they have to be identified to specific 
observations of real cars. At last, the stochastic prediction 
of a partial estimation of the booming noise - using 
optimized dispersion parameters- is compared to measured 
values.  
This paper is mainly based on [1,2]. 

2 Production vehicles dispersion 
measurement 

Experiments which are described here were performed in 
PSA Peugeot-Citroën facilities. The system under 
consideration is the full vehicle for which two sets of  
 

 
 
experiments have been defined. The first set is made up of 
measurements of the structural vibration and structural-
acoustic responses. The second set is devoted to the 
acoustic measurements inside the internal acoustic cavity. 

2.1 Structural and vibroacoustic 
measurements 

 
Fig.1 Car body, structural excitation and observation 

The first set of experiments consists, (i), in measuring 
structural Frequency Response Functions (FRFs) between a 
force (vertical component of the powertrain right mount 
action) and normal accelerations of the structure at six 
given points and, (ii), in measuring structural-acoustic FRFs 
between nine excitation Degrees Of Freedom (DOFs) at the 
powertrain connection point and the acoustic pressure at the 
driver ears. The frequency band of analysis is [20, 220] Hz. 
The experimental database has been constructed using 20 
cars of the same type with various optional extras. 
Measurements have been performed at the exit of the 
assembly plant. Fig.1 shows the car body, the structural 
driving point (vertical excitation) and two structural 
observation points (denoted by Obs4 and Obs6). In this 
paper, experimental results will only be presented for point 
Obs6.   
Fig.2 displays the experimental structural FRFs introduced 
above for observation point  Obs6 and for the 20 measured 
cars. This experimentally observed dispersion is mainly due 
to the variability of the samples induced by the optional 
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extras and by the manufacturing process. Measurements 
errors as well as atmospheric conditions may also 
contribute to the spread of results. This observed dispersion 
is increasing with the frequency, in coherence with 
published results [3]. The experimental dispersion varies 
between 5 and 10 dB in the regions close to the resonances, 
and varies from 15 to 30 dB close to anti-resonances. 
Vibroacoustic FRF’s will not be presented individually. 
They will be synthesized in an estimate of the booming 
noise (2nd engine harmonic vs rpm), obtained by 
multiplying each of the FRF by an associated known force, 
and adding up all contributions. Such estimate of the 
booming noise may be seen in the background of Fig. 8.  

 

 

Fig.2 Structural FRF modulus at point Obs6 for the 20 
measured cars  

 
Fig.3 Car compartment energy of 20 measurements with 

environmental and packaging changes 

2.2 Acoustic measurements 

The second set of experiments consists in measuring the 
acoustic FRFs between the acoustic pressures at 32 points 
inside the internal acoustic cavity and an acoustic velocity 
point-source located near the feet of the front passenger. In 
order to synthesize results, the energy of the cavity is 
computed: 
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 This experimental database has been constructed for 30 
different configurations of internal acoustic cavity of a 
same car: type and position of seats, air temperature, wall 
boundaries between the trunk and the passenger 
compartment, number of passengers. The frequency band of 
analysis is [20, 320] Hz. Fig. 3 displays the 30 spectra of 
the cavity energy that were measured. It can be noticed that 
the order of magnitude of dispersion is much lower than in 
the previous case (Fig.2): indeed, energy is known as a 
robust state variable. 

3 Nonparametric stochastic modeling 
of a structural-acoustic problem 

The structural-acoustic coupling problem, such as the one 
existing in a car, is expressed as a general boundary value  
problem, as explained in [4]. Most kind of boundary 
conditions as well as mechanical behavior for the structure 
and the cavity are supported. Fig. 4 shows the scheme of 
the considered idealized system including a structural part, 
surrounding an acoustic cavity. 

 
Fig.4 Scheme of the idealized structural-acoustic system 

 
Fig.5 Finite Elements mesh of the computational structural-

acoustic model (978 733 DOF’s) 

3.1 Mean computational model 

The  finite element method [5] is used to solve numerically 
the above mentioned boundary value problem in a 
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deterministic case.  The resulting FE model will later be 
referred as “mean computational model”. Let us consider 
the finite element meshes of the structure and the internal 
acoustic fluid as shown on Fig.5. Such FE models are 
obtained following specific modeling rules [6].  

Let su  (resp. ap ) be the complex vector of the ns  (resp. na) 
DOFs of the structure (resp. acoustic cavity) according to 
the finite element discretization of the displacement field u 
(resp. pressure field p). The finite element discretization of 
the boundary value problem in terms of u and p yields the 
mean computational structural-acoustic model: 
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where aaa
aaa nnn KDM ,, are -abusively- named the mass, 

damping and stiffness matrices of the cavity.  

as n,nC is the vibroacoustic coupling matrix.  

It is a common practice to proceed to a model reduction by 
mean of a projection over the eigenvectors -modes- of the 
undamped problems for the structure and for the cavity.  In 
the application shown on Fig.5, 1723 structural modes and 
57 acoustic modes were considered. 
For the structure and the cavity, the generalized 
coordinates, )(),( ωω as qq ΦΨ

 , are introduced such as: 
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The structural-acoustic problem can then be set in the 
reduced form: 
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where the reduced dynamic stiffness matrix, )(ωsAΨ , and 

the reduced admittance matrix, )(ωaAΦ , have similar 
expression as above: 

ssss KDMA ΨΨΨΨ ++−= ωωω j2)(  
aaaa j ΦΦΦΦ ++−= KDMA ωωω 2)(  

In this case, mass and stiffness matrices are diagonal, 
thanks to the orthogonality property. Reduced damping 
matrices are generally full symmetric matrices.   

3.2 Nonparametric stochastic modeling 

As stated in introduction, both data and model uncertainties 
have to be accounted in order to improve the robustness of 
simulations for cars in mass production. The nonparametric 
probabilistic approach is a well defined mathematical 
method [7,8], providing a stochastic modeling of any 
physically possible changes of the mean computational 
model . It consists in modeling the reduced mass, damping 
and stiffness matrices of both structure and cavity, as well 
as the reduced vibroacoustic coupling matrix, 

  ΦΨ,
sss CKDMKDM ,,,,,, aaa
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by random matrices: 
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Let H be anyone of these random matrices. The probability 
density function of such a random matrix H  only depends 
on: 

- the mean value { }HH E=  where E is the 
mathematical expectation, 

-  one single dispersion parameter , Hδ , which is 
independent of the matrix dimension.  
An algebraic representation of random matrix H has been 
developed and allows independent realizations to be 
constructed for a stochastic solver based on the Monte 
Carlo numerical simulation. For random matrices 
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symmetric positive-definite (or positive-semidefinite) real-
valued random matrix which may be written as 
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H
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Hδ

G is a random germ matrix whose mathematical 
expectation is the identity matrix and for which the square 
of  the coefficient of variation is 2

Hδ . 

The case of the rectangular random vibroacoustic coupling 
matrix, ΦΨ ,C , will not be treated in this paper and we refer 
the reader to [1,2]. 
The stochastic reduced model of the uncertain structural-
acoustic system is expressed, for all ω fixed in the 
frequency band of analysis, as:   
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The observed random responses of the uncertain structural-
acoustic problem are the random structural displacements 
and the random acoustic pressures, deduced from the 
random generalized coordinates: 
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The solutions obtained for successive independent 
realizations of this random vibroacoustic system are 
constructed using the Monte-Carlo method which allows  
statistics of the random observations to be estimated. The 
confidence regions associated with a given probability level 
are obtained using the method of quantiles [9]. In the 
following, stochastic computation results will be 
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represented by their mean value and their confidence 
interval with a probability level of 95%.  It was verified that 
the Monte-Carlo method requires about 600 realizations to 
reach  convergence. 

4 Dispersion parameters 
identification 

Once the stochastic model of the studied vibroacoustic 
system is set up, then its application requires the knowledge 
of the dispersion parameters associated with  the 7 matrices 
involved in the structural-acoustic system. Two different 
methodologies are applied one for the cavity and the other 
one for the structure.  

4.1 Acoustic dispersion parameters  

Dispersion parameters 
aaa DKM δδδ ,,  of the internal 

acoustic cavity are identified using the experimental 
database defined in Section 2.2. For this identification, it is 
assumed that aδδδδ ===

aaa DKM . Various analyses 
have shown that the sensitivity of confidence regions to 
acoustic mass and stiffness dispersion parameters were 
similar.   Moreover, confidence regions appeared to be not 
very sensitive to the damping dispersion parameter. In this 
context, the above assumption allows the computational 
cost to be drastically decreased when considering only one 
variable instead of three.  

 
Fig.6 Comparison of the stochastic modeling of the cavity 

energy (solid black lines: average value and 95% 
confidence interval) with experimental results (grey solid 
lines) and  mean computational model (dotted black line).  

The identification method used to identify the acoustic 
dispersion parameter is the maximum likelihood method 
[10,11]. The likelihood function is defined as the product of 
the probability density functions evaluated at each 
experimental data.  In practice,  the log-likelihood function 
is used: 

( )( )∑=∠
i

iaYa Yp exp
10 ,log)( δδ  

where ( )yp aY ,δ  is the probability density function 
of the random observation Y computed with the stochastic 
model for a given value of the dispersion parameter aδ . 

The identification problem can then be formulated as the 
following optimization problem: 
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a

a
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It should be noted that this methodology requires an 
estimate of the probability density function which requires 
a large number of independent realizations in the Monte-
Carlo method. 
For this application, the random observation  Y is defined 
by 
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−
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Fig. 6 compares the result of the optimized model with the 
experiments. Although the trend seems to be good, the 
model often overestimates the upper limit of the 
experimental spread. This is due to the necessary 
introduction of model uncertainties whose intensity is 
measured by the value of the dispersion parameter.  

4.2 Structural dispersion parameters   

Structural dispersion parameters are identified from the 
structural measurements described in Section 2.1. In this 
case, the assumption that the 3 dispersion parameters are 
equal can not be made anymore. Mass and stiffness 
dispersion parameters lead to different effects (see [1]).  
Due to the size of the computational model  and due to the 
fact that three parameters have to be identified, a more 
conventional “mean-square” methodology, less time 
consuming, is chosen. The identification of the dispersion 
parameters is written as the following optimization 
problem: 

   { })(min s
opt
s JArg

s

δ
δ

δ =  

where )( sJ δ  is an  error function that is the sum of two 
norms. The first norm represents the variance of the 
computational model due to uncertainties and the second 
norm represents the bias between the experiments and the 
stochastic model: 
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where Z represents any relevant random observation. 
For this first application, the optimization was performed 
using a response surface. 
Once the optimal values of the dispersion parameters are 
obtained, results of the optimal reduced stochastic model 
can be compared with the experimental results. Fig.7 
compares the structural FRF between the right engine 
mount and point Obs4.  As it was the case for the acoustic 
cavity, the general trends are well respected. Again the 
confidence interval of the computational model is much 
higher than the experimental spread. This is due to the 
amount of dispersion that was required to compensate 
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model uncertainties or modeling errors which effects 
clearly appear on Fig.7.   

 
Fig.7 Structural FRFs at point Obs6: Comparison of the 

stochastic modeling (solid black lines: average value and 
95% confidence interval) with experiments (grey solid  

lines)  and  mean computational model (dotted black line). 

 

Fig.8 Booming noise estimate: Stochastic computation 
using the optimized dispersion parameters modeling (solid 

black lines: average value and 95% confidence interval)  
compared with experimental values (grey solid  lines)  and  

mean computational model (dotted black line). 

5 Experimental validation of the 
stochastic computational structural-
acoustic model for the booming noise 

Since direct measurements were not available, an estimate 
of the booming noise is built from the vibroacoustic FRFs 
as explained in section 2.1. The same forces may be applied 
to the model to get simulated values of the same estimate of 
the booming noise. This approach allows focusing on the 
car body uncertainties apart from engine excitations 
uncertainties. Figure 8 shows a comparison of the stochastic 
computational model results with experimental results. 
General trends are very similar and the agreement seems 
even better than what was observed in Fig.6 and 7.  

6 Conclusions 

A stochastic modeling of the structural-acoustic problem, 
including data and model uncertainties, have been 
presented and applied to the low-frequency noise in a car. 
Dispersion parameters of this first model have been fitted to 
an experiment involving 20 production vehicles. Two 
different identification methods have been investigated 
providing satisfactory results. Due to model uncertainties, 
the predicted confidence interval remains much larger than 
the spread of experimental results. Nevertheless, 
experimental results are mostly covered by the confidence 
interval of the stochastic prediction, which assess the 
relevance of this kind of stochastic modeling for 
automobile applications. 
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