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Morphological description of sound has been proposed by Pierre Schaeffer. Part of this description
consists in describing a sound by identifying the temporal evolution of its acoustical properties to a set
of descriptors. This kind of description is especially useful for indexing sounds with unknown cause such
as SoundFX. The present work deals with the automatic estimation of these morphological descriptions
from audio signal analysis. In this work, three morphological descriptions are considered: - dynamic
profiles (ascending, descending, ascending/descending, stable, impulsive), - grain/ iteration profiles, -
melodic profiles (up, down, fixed, up/ down, down/ up). For each case we present the most appropriate
audio features and mapping algorithm used to automatically estimate these profiles. We demonstrate
the use of these descriptions for automatic indexing and search-by-similarity.

1 Introduction

Sound description has been the subject of many re-
searches over the last decades. Most of the researches
in this field focus on the recognition of the sound source
(the cause that has produced the recorded sound). For
example [10] [5] [15], [6] propose systems for the au-
tomatic recognition of musical instruments (the cause
of the sound), [8] for percussive sounds. Other sys-
tems focus on describing sound using the most percep-
tually significant characteristics (based on experimental
results). For example [20] [11] [17] [1] [3] propose sys-
tems based on perceptual features (often the musical
instrument timbre) in order to allow application such as
search-by-similarity or query-by-example. For these ap-
plications the underlying sound description is hidden to
the user and only the final results are given to him. This
is because it is difficult to share a common language for
sound description [7] outside the usual source/ causal
description. Therefore, a problem arises when dealing
with abstract sounds, SoundFXs, unnatural or synthetic
sounds for which the source/ cause is usually unknown
or unrecognizable. Another approach must be used for
these sounds.

In this paper we propose a system for generic sound
description based on Pierre Schaeffer proposals. In “Traite
des objets musicaux” [19] (later reviewed by [2]), Scha-
effer proposes to describe sound using three points of
view. The first one, named “causal” listening, is re-
lated to the sound recognition problem (when one tries
to identify the sound source). The second, named “se-
mantic” listening, aims at describing the meaning of
a sound, the message the sound brings with it (hearing
an alarm or a church-bell sound brings information). It
is deeply related to the shared cultural knowledge. Fi-
nally the “reduced” listening describes the inherent
characteristics of a sound independently of its cause and
its meaning. The reduced listening leads to the concept
of “sound object”. A sound object is described using
morphological criteria. Schaeffer distinguishes two
kinds of morphology: - the internal morphology, which
describes the internal characteristics of a sound, - the
external morphology, which describes a sound object as
being made of distinct elements, each having a distinc-
tive form. To distinguish between both we define the
concept of “unitary sound”. A unitary sound contains
only one event and cannot be further divided into inde-
pendent segments, either in time (succession) or spec-
trum (polyphony).

1.1 Morphological sound description

Schaeffer proposes to describe sound using seven mor-
phological criteria: the mass, the harmonic-timbre, the
grain, the “allure”, dynamic criteria, melodic profile and
mass profile. These criteria can be grouped [18] into
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1. description of the sound matter: mass (description
of the sound pitchness), harmonic-timbre (dark,
bright. .. ), grain(resonance, rubbing, iteration)

2. description of the sound shape: dynamic criteria
(impulse, cyclic...), “allure” (amplitude of fre-
quency modulation)

3. variation criteria: melodic and mass profiles

1.2 Ecrins’ sound description

Following Schaeffer works, there has been much discus-
sion concerning the adequacy or not of the proposed
criteria to describe generic sound, to verify their qual-
ity and pertinence. Some of the criteria, although very
innovative (e.g. 7grain”, 7allure” (rate), “profile”) are
very often subject to interrogations or confusions and
have to be better circumscribed. Because of that, some
authors have proposed modifications or additions to Scha-
effer criteria [13] [9].

In the Ecrins project (Ircam, GRM, Digigram)[12],
a set of criteria based on Schaeffer work has been estab-
lished for the development of an online sound search-
engine. The search-engine must use sound description
coming from automatic sound indexing. In this project,
the morphological criteria (called morphological sphere)
are divided into two descriptors sets: main and comple-
mentary [4].

The main descriptors are: - the duration, - the
dynamic profile (flat, increasing or decreasing), - the
melodic profile (flat, up or down), - the attack (long,
medium, sharp), - the pitch (either note pitch or area)
and - the spectral distribution (dark, medium, strident).

The complementary descriptors are the space
(position and movement) and the texture (vibrato, tremolo,
grain).

Icons representing the main-descriptors have been
integrated in a Flash-based interface. This interface
allows the user to enter easily the description of new
sounds or to create a query based on specific morpho-
logical criteria (see Fig. 1).

1.3 Paper content and organization

The present work deals with the automatic estimation of
this morphological description from audio signal analy-
sis. Among the proposed descriptions three morpholog-
ical descriptions are considered:

e Dynamic profiles (ascending, descending, ascend-
ing/descending, stable, impulsive),

e Grain/ iteration profiles,

e Melodic profiles (up, down, fixed, up/ down, down/
up).
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Figure 1: Flash interface for iconic representation of
the main morphological sound descriptors.

For each case we present the most appropriate audio fea-
tures and the mapping algorithm used to automatically
estimate the profiles.

The paper is organized as follows. Part 2 present
the concept of audio features and the inadequacy of the
usual feature temporal models to represent morpholog-
ical profiles. Parts 3.1, 3.2, 3.3 present the algorithms
developed to estimate the three considered morphologi-
cal profiles. We finally discuss the results in part 4 and
present further works.

2 Sound description

2.1 Audio features

An audio feature (sound descriptor) is a numerical value
which describes a specific property of an audio signal.
Most of the time, audio features are extracted by apply-
ing signal processing algorithms (FFT, Wavelet...) to
an audio signal. Depending on the audio-content (mu-
sical instrument sound, percussion, SoundFX, speech,
music. .. ) and on the application (indexing, search-by-
similarity) numerous audio features have been proposed:
spectral centroid, log-attack-time, Mel frequency cep-
stral coefficients. .. A list of the most commonly used
audio features can be found in [16].

2.2 Modelling time

Audio features are usually extracted on a frame-basis: a
value is extracted every 20ms. These features are called
“instantaneous”. A sound is then represented by the
succession of its instantaneous features. This notion of
“succession” is however difficult to represent in a com-
puter. This is why the temporal ordering of the features
is often represented using delta-features or acceleration
features. The features can also be summed up using
their statistical moments over larger period of time (by
computing the mean and variance of instantaneous fea-
tures over a 500ms sliding-window). These features are
often called “texture window”. The notion of “succes-
sion” can also be represented using time-dependent sta-
tistical models such as hidden Markov models.

Usual audio indexing problems are solved by com-
puting instantaneous features, modelling their large-scale
statistical moments and then applying pattern matching
algorithms (GMM, HMM. ..). This approach is known
as the “bag-of-frame” approach. However, when applied
to the problem of morphological profiles description, this
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approach leads to poor results. This is because usual
temporal modelling methods do not allow matching the
shape of the considered morphological profiles.

In the present work, instead of using generic audio
features and use them to train complex statistical mod-
els, we develop specific (complex) audio features which
allow distinguishing classes with simple statistical mod-
els (linear separability). In order to do that, we need
to understand the exact meaning of the morphological
profiles in terms of audio content. We do this by using
a test-set for each morphological profile.

3 Morphological sound description

3.1 Dynamic profiles

The input sound of the system is supposed to be uni-
tary (i.e. cannot be segmented further). The sound is
also supposed to belong to one of the five considered dy-
namic profiles: - ascending, - descending, - ascending/
descending, - stable, - impulsive.

3.1.1 Feature extraction

On feature design: Usual sound description sys-
tems works a-posteriori: they try a-posteriori to map
extracted audio features to a sound class definition. We
work the opposite way using an a-priori approach: we
develop audio features corresponding directly to the con-
sidered classes (the five profiles).

Loudness: Since the dynamic profiles are related to
the perception of loudness, we first extract the instan-
taneous AudioLoudness [(¢) from the signal. We then
use this time function to estimate the various dynamic
morphological profiles.

Slope estimation: The profiles “ascending”, “de-
scending”, “ascending/ descending” are described by es-
timating the slope of I(t). We define tj; as the time
which corresponds to the maximum value of the loud-
ness over time. ¢, is estimated from a smoothed version
of I(t) (low-pass filtering). We then compute two slopes:
one before and one after ¢,;.

Relative duration: A small or large value of slope
means nothing without the knowledge of the segment
duration it describes. We define the relative-duration as
the ratio of the duration of a segment to the total du-
ration of the sound. We compute two relative-durations
corresponding to the segments before and after ¢,;.

Time normalization: The dynamic profiles must
be independent of the total duration of the sound (a
sound can increase over 1s or over 60s, it is still an “in-
creasing” sound). For this, all the computations are
done on a normalized time axis ranging from 0 to 1.

B-spline approximation: In order to get the slope
corresponding to the dynamic profiles we want to ap-
proximate [(t) by two first-order polynomial before and
after t5;. However, this would not guarantee the conti-
nuity of the corresponding function at ¢;;. We therefore
use a second-order B-spline to approximate [(¢) with
knots at (tf,1(tr)), (tar,i(tar)) and (,1(t)). ts and t.
are the times corresponding to the first and last value of
I(t) above 10% of I(tps). Since the second-order B-spline
is continuous at the Oth order, the resulting first-order
polynomials before and after ¢); are guarantee to con-
nect at tys.

Effective duration: The two-slopes model allows
to represent the “ascending”, “descending”, “ascending/
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descending” profiles as well as the “stable” profile (in
this case the two slopes are equal and small). The dis-
tinction between “impulsive” profile and the other ones
is done by computing the TemporalEffectiveDuration of
the signal. The TemporalEffectiveDuration is defined
as the time [(t) is above a given threshold (40% in our
case), normalized by the total duration. The various
stages of the extraction are summed up here (see also
Fig. 2):

1. Extraction of the instantaneous AudioLoudness I(t),
Apply a low-pass filter to I(t),

Apply a threshold to I(t) equal to 10% of (),
Locate the maximum value of I(t),

Express [(t) in log-scale,

A

Model {(t) using a second-order B-spline,
7. Convert the B-spline to PP-spline.

In Fig. 3 we illustrate the extraction process on a real
signal belonging to the “ascendant” dynamic profile.

From the spline approximation we compute the fol-
lowing set of features (see Fig. 2): - S1: Slope of the first
segment, - RD1: Relative Duration of the first segment,
- S2: Slope of the second segment, - RD2: Relative
Duration of the second segment, - ED: TemporalEffec-
tiveDuration of the whole signal.

AudioLoudness

LowPass Filter (fc=1Hz)

Noise Threshcid >10%

Maximum decection

PP-spline s1 s2

S1: Slopet,
RD1: RelativeDuration1
S2: Slope2,
RD2: Relative Duration2
ED: TemporalEffective Duration

RD1 RD2

Figure 2: Audio features extraction algorithm for
dynamic profiles estimation.

3.1.2 Ewvaluation

We have evaluated the proposed extraction method on a
test-set of 187 audio files (26 ascending, 68 descending,
24 ascending/ descending, 37 stable, 32 impulsive). The
sounds are part of the “Sound Ideas 6000” collection and
have been selected by one of the author only based on
their perceptual characteristics.

In Fig. 4, we represent the 187 sounds in the feature
spaces x=51/ y=RD1 (top part), x=S2/ y=RD2 (bot-
tom part). The dynamic profiles classes are represented
as: ascending (green), descending (red), ascending/ de-
scending (black), stable (magenta), impulsive (blue).
Fig. 4 clearly shows a separation of the four first classes.
In this figure, the impulsive (blue) and ascending/ de-
scending (black) classes are mixed; this is because the
TemporalEffectiveDuration is not represented here.

We have also performed a classification test using
the PART algorithm. The PART algorithm provides
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Figure 3: Estimation of dynamic profile parameters: a)
loudness (black) and smoothed loudness over time
(red), b) 10% threshold apply to smoothed loudness, ¢)
smoothed loudness in log-scale, d) Maximum value
(vertical red bar) and B-spline modeling.

the set of rules (indicated into Tab. 1) that must be
used to perform automatic classification.
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Figure 4: Representation of the dynamic profile
test-set into the the feature spaces x=S1/ y=RD1 (top
part), x=S2/ y=RD2 (bottom part).

3.2 Grain/ iteration profiles

Six grain/ iteration profiles have been considered: - IT:
periodic, - IHV: periodic with variable intensity, - THT:
periodic with variable timbre, - IV: variable iterative,
- IPH: periodic with non-periodic elements inserted, -
IPV: periodic layer + non-periodic layer.

The profiles are illustrated by a set of 188 sounds
coming from the “Sound Ideas 6000” collection (67 IT,
4THV, 41 THT, 101V, 2 IPH, 4 IPV + 22 IV-THT, 1 IV-
IPH, 5 IV-IPH-THT). The sounds have been selected by
one of the author only based on their perceptual char-
acteristics.

3.2.1 Feature extraction

Grain/ Iteration profiles: Iterative sounds are de-
fined by the repetition of a sound-element over time.
Repetition of a sound-element can occur at the dynamic
level, perceived pitch level or at the timbre level. This



Descending ED > 0.28 AND
Dur1 <= 0.214286 AND
Slope2 <= -0.584657
Stable ED > 0.28 AND
Slope2 > -1.287156 AND
Slope2 <= 6.022541
Impulsif ed <= 0.28: (32.0)
Ascending Dur1 > 0.73991 AND
Slope1 > 0.403746
Ascending/Descending |Slope1 > 0.972048

Table 1: Rules for automatic classification into
dynamic profiles.

complicates the automatic detection of the repetition.
Moreover several repetition cycles can occur at the same
time for the same parameters (given complex cycle such
as the repetition of a rhythm pattern) or for various
parameters (one dynamic cycle plus a different timbre
cycle). Corresponding to these are methods for the auto-
matic detection of repetition based on loudness, funda-
mental frequency or MFCC. Another complexity comes
from the variation of the period of repetition over the
sound duration or from disturbance from other perceived
parameters.

Among the wide range of possible descriptions for
iterative sounds we selected the three following predom-
inant characteristics which are connected to the six con-
sidered profiles:

e The amount of repetition: allows distinguishing
between iterative sounds and non-iterative sounds

e The period of the cycle: allows distinguishing be-
tween “grains” (short period) and “repetitions”
(long period)

e The characteristics of the repeated element: al-
lows distinguishing between percussive elements
and smooth elements

The algorithm works in three stages: 1) Estimation
of the amount of periodicity of the sounds and estima-
tion of the period of the cycle, 2) localization of one of
the repeated element, 3) characterization of the repeated
element.

Estimation of the periodicity for dynamic el-
ements: The AudioPower descriptor is computed with
a small hop size (5ms). This small hop size allows the
description of fast repetition (such as ”grains”) or slow
repetition. The amplitude spectrum of this energy func-
tion is computed and the maximum peak of the spec-
trum in the range [0.1, 20] Hz is estimated. The period
corresponding to this frequency is considered as the pe-
riod of the cycle. The amount of periodicity is given by
the value of the normalized auto-correlation function at
the period of the cycle position.

Estimation of the periodicity for timbre/pitch
elements: The AudioMFCC descriptor is computed.
The corresponding similarity matrix is computed and
transform to the lag-domain (lag-matrix). An AudioSim-
ilarity function is computed as the normalized sum over
the time axis of the lag-matrix (sum over the column
normalized by the number of element in each column
of the matrix). This AudioSimilarity function expresses
the amount of similarity of the sounds for specific lags.
The amplitude spectrum of the AudioSimilarity function
is computed and the maximum peak of the spectrum in
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the range [0.1, 20] Hz is estimated. The frequency of
this peak is considered as the period of the cycle. The
amount of periodicity is given by the value of the nor-
malized auto-correlation function at the period of the
cycle position.

Localization of one of the repeated element:
The localization of the repeated elements is done by a
method developed for PSOLA pitch-periods localisation
[14]. Given the period of the cycle T, we define a vec-
tor of cycle instants T-(t) = >, 6(t — 7 — kT) (T is a
comb-filter starting at time 7 with periodicity T"). The
local-maxima of the AudioPower (or of the AudioSimi-
larity) around the values of T are detected. We compute
the sum of the AudioPower at these positions. The pro-
cess is repeated for various 7 values. The value 7 leading
to the maximum sum defines the vector which gives the
best time locations for a segmentation into repeated el-
ements.

Characterization of the repeated element: One
of the sound-elements is then used for characterizing the
signal in terms of perceptual audio features. The follow-
ing audio features are extracted for this element (see [16]
for details on the audio features): - Temporallncrease, -
TemporalDecrease, - TemporalEffectiveDuration, - Au-
dioSpectrumCentroid, - AudioSpectrumSpread.

The flowchart of the extraction process is illustrated
into Fig. 5.

AudioPower AudioMFCC
SimilarityMatrix
AudioSimilarity
|
v
I FFT (0.1-20 Hz) | [ Auto-correlation |
I Period | Periodicity |
udi Type | »] PSOLA analysi |
Repeated element
signal ] Characterization |

Temporal Increase,
Temporal Decrease,
TemporalEffective Duration
AudioSpectralCentroid,
AudioSpectral Spread

Figure 5: Audio features extraction algorithm for
iterative profiles estimation.

3.2.2 Evaluation

Since the proposed description (amount of repetition,
period of the cycle and characteristics of the repeated
element) does not match directly the six proposed grain/
iteration profiles of the test-set, it hasn’t be possible to
perform a classification evaluation for the grain/ itera-
tion description.

The grain/ iteration description has however been
used in a prototype search-by-similarity application. In
this application the user can select a sound and ask for
sounds with similar iteration speed and/or audio charac-
teristic of the sound-elements. Each of the criteria used
for the search-by-similarity can be weighted between 0
and 1 in order to de-emphasize or emphasize a specific
criterion.
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3.3 Melodic profiles

Five melodic profiles have been considered: - up, - down,
- fixed, - up/ down, - down/ up.

The profiles are illustrated by a set of 188 sounds
coming from the “Sound Ideas 6000” collection (71 up,
56 down, 32 fixed, 23 up/ down, 6 down/ up). The
sounds have been selected by one of the author only
based on their perceptual characteristics.

Despite the shared perception of the melodic pro-
files, it has not been possible to create a system for the
automatic extraction of them. This comes from several
reasons:

e Pitch/ Spectrum: the perception of melodic pro-
files comes either from a modification of the pitch
or from a modification of the spectral envelope
(spectral centroid, resonant frequency). The cur-
rent profiles should therefore be further divided
into sub-profiles according to these characteristics.

e Time extend: some profiles judged as ascending
melody are in fact decreasing (in spectral content)
over a long period of time and only increasing (in
pitch) over a small period of time.

e Non-unitary melodic profiles: other profiles judged
as ascending melody are in fact quick repetition of
descending-note-arpeggio (such as in harp sounds)
with increasing root-note.

In conclusion, in order to be able to apply automatic
extraction algorithms for the melodic profiles estima-
tion, further refinements are first needed in the specifi-
cation of these profiles.

4 Conclusion

In this paper we have presented audio features and map-
ping algorithms for the automatic estimation of three
morphological profiles derived from Schaeffer proposed
description of sound.

The dynamic profiles estimation is achieved using
temporal loudness estimation which is then approximated
using B-splines. The extracted features allow a good
match with a provided test-set.

The grain/ iterative profiles are described by the
amount of periodicity of the signal, the periodicity it-
self and an acoustical description of the repeated ele-
ments. Spectral analysis of the AudioPower function
or of the AudioSimilarity derived from the AudioMFCC
Lag-matrix are proposed to measure the periodicity. A
PSOLA algorithm is then apply to locate the repeated
elements which are then described by a set of percep-
tual audio features. The extracted features were used
in a query-by-example application with positive user-
feedbacks.

We finally discussed the case of the melodic profiles
and highlighted the problems with the current catego-
rization of the profiles which does not allow their auto-
matic estimation. Further work will therefore concen-
trate on that.

The remaining descriptions of sound objects presented
in Part 1.2 (attack, pitch and spectral distribution) were
not discussed in this paper since they do not involve
modelling time. These descriptions can be obtained us-
ing the audio features described in [16] and were dis-
cussed in previous works such as [18].
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